Previous |  Up |  Next

Article

Title: A property of Wallach's flag manifolds (English)
Author: Arias-Marco, Teresa
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 307-319
Summary lang: English
.
Category: math
.
Summary: In this note we study the Ledger conditions on the families of flag manifold $(M^{6}=SU(3)/SU(1)\times SU(1) \times SU(1), g_{(c_1,c_2,c_3)})$, $\big (M^{12}=Sp(3)/SU(2) \times SU(2) \times SU(2), g_{(c_1,c_2,c_3)}\big )$, constructed by N. R. Wallach in (Wallach, N. R., Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), 276–293.). In both cases, we conclude that every member of the both families of Riemannian flag manifolds is a D’Atri space if and only if it is naturally reductive. Therefore, we finish the study of $M^6$ made by D’Atri and Nickerson in (D’Atri, J. E., Nickerson, H. K., Geodesic symmetries in spaces with special curvature tensors, J. Differenatial Geom. 9 (1974), 251–262.). Moreover, we correct and improve the result given by the author and A. M. Naveira in (Arias-Marco, T., Naveira, A. M., A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving, Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45.) about $M^{12}$. (English)
Keyword: Riemannian manifold
Keyword: naturally reductive Riemannian homogeneous space
Keyword: D’Atri space
Keyword: flag manifold
MSC: 53B21
MSC: 53C21
MSC: 53C25
MSC: 53C30
MSC: 53Cxx
idZBL: Zbl 1199.53092
idMR: MR2381780
.
Date available: 2008-06-06T22:51:47Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108076
.
Reference: [1] Arias-Marco T.: The classification of 4-dimensional homogeneous D’Atri spaces revisited.Differential Geometry and its Applications 25 (2007), 29–34. Zbl 1121.53026, MR 2293639
Reference: [2] Arias-Marco T., Kowalski O.: The classification of 4-dimensional homogeneous D’Atri spaces.to appear in Czechoslovak Math. J. MR 2402535
Reference: [3] Arias-Marco T., Naveira A. M.: A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving.Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45. Zbl 1063.53042
Reference: [4] Bueken P., Vanhecke L.: Three- and Four-dimensional Einstein-like manifolds and homogeneity.Geom. Dedicata 75 (1999), 123–136. Zbl 0944.53026, MR 1686754
Reference: [5] D’Atri J. E.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces.Michigan Math. J. 22 (1975), 71–76. MR 0372786
Reference: [6] D’Atri J. E., Nickerson H. K.: Divergence preserving geodesic symmetries.J. Differential Geom. 3 (1969), 467–476. Zbl 0195.23604, MR 0262969
Reference: [7] D’Atri J. E., Nickerson H. K.: Geodesic symmetries in spaces with special curvature tensors.J. Differenatial Geom. 9 (1974), 251–262. Zbl 0285.53019, MR 0394520
Reference: [8] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants.Ann. Mat. Pura Appl. 123(4) (1980), 35–58. Zbl 0444.53032, MR 0581924
Reference: [9] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vols. I and II.Interscience, New York, 1963 and 1969. MR 0152974
Reference: [10] Kowalski O.: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds.Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131–158. Zbl 0631.53033, MR 0829002
Reference: [11] Kowalski O., Prüfer F., Vanhecke L.: D’Atri Spaces.Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. Zbl 0862.53039, MR 1390318
Reference: [12] Podestà F., Spiro A.: Four-dimensional Einstein-like manifolds and curvature homogeneity.Geom. Dedicata 54 (1995), 225–243. Zbl 0835.53056, MR 1326728
Reference: [13] Szabó Z. I.: Spectral theory for operator families on Riemannian manifolds.Proc. Sympos. Pure Math. 54(3) (1993), 615–665. MR 1216651
Reference: [14] Wallach N. R.: Compact homogeneous Riemannian manifols with strictly positive curvature.Ann. of Math. 96 (1972), 276–293. MR 0307122
Reference: [15] Wolf J., Gray A.: Homogeneous spaces defined by Lie group automorphisms, I.J. Differential Geom. 2 (1968), 77–114, 115–159. Zbl 0169.24103, MR 0236328
Reference: Wolf J., Gray A.: Homogeneous spaces defined by Lie group automorphisms, II.J. Differential Geom. 2 (1968), 115–159. Zbl 0182.24702, MR 0236329
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_2.pdf 244.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo