Previous |  Up |  Next

Article

Title: Contractions of Lie algebras and algebraic groups (English)
Author: Burde, Dietrich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 321-332
Summary lang: English
.
Category: math
.
Summary: Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups. (English)
Keyword: contractions
Keyword: Lie algebras
Keyword: affine algebraic groups
Keyword: affine group schemes
MSC: 14L15
MSC: 14Lxx
MSC: 17B81
MSC: 17B99
MSC: 17Bxx
MSC: 20G99
MSC: 20Gxx
MSC: 81R05
idZBL: Zbl 1199.14016
idMR: MR2381781
.
Date available: 2008-06-06T22:51:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108077
.
Reference: [1] Agaoka Y.: An algorithm to determine the isomorphism classes of 4-dimensional complex Lie algebras.Linear Algebra Appl. 345 (2002), 85–118. Zbl 0998.17002, MR 1883269
Reference: [2] Borel A.: Lienar Algebraic Groups.Graduate Texts in Mathematics, 126, Springer-Verlag, New York (1991), 1–288. MR 1102012
Reference: [3] Burde D.: Degenerations of nilpotent Lie algebras.J. Lie Theory 9 (1999), 193–202. Zbl 1063.17009, MR 1679999
Reference: [4] Burde D., Steinhoff C.: Classification of orbit closures of $4$–dimensional complex Lie algebras.J. Algebra 214 (1999), 729–739. Zbl 0932.17005, MR 1680532
Reference: [5] Burde D.: Degenerations of $7$-dimensional nilpotent Lie Algebras.Commun. Algebra 33, No. 4 (2005), 1259–1277. Zbl 1126.17011, MR 2136700
Reference: [6] Carles R., Diakité Y.: Sur les variétés d’algèbres de Lie de dimension $\le 7$.J. Algebra 91 (1984), 53–63. Zbl 0546.17006, MR 0765770
Reference: [7] Daboul C.: Deformationen und Degenerationen von Lie Algebren und Lie Gruppen.Dissertation (1999), Universität Hamburg.
Reference: [8] Gerstenhaber M., Schack S. D.: Relative Hochschild cohomology, rigid Lie algebras and the Bockstein.J. Pure Appl. Algebra 43, No. 1 (1986), 53–74. MR 0862872
Reference: [9] Grunewald F., O’Halloran J.: A characterization of orbit closure and applications.J. Algebra 116 (1988), 163–175. Zbl 0646.17002, MR 0944153
Reference: [10] Hartshorne R.: Algebraic Geometry.Graduate Texts in Mathematics, 52 (1977). Zbl 0367.14001, MR 0463157
Reference: [11] Inönü E., Wigner E. P.: On the contraction of groups and their representations.Proc. Natl. Acad. Sciences USA 39 (1953), 510–524. Zbl 0050.02601, MR 0055352
Reference: [12] Lauret J.: Degenerations of Lie algebras and Geometry of Lie groups.Differ. Geom. Appl. 18, No. 2 (2003), 177–194. MR 1958155
Reference: [13] Nesterenko M., Popovych R.: Contractions of low-dimensional Lie algebras.J. Math. Phys. 47 (2006), no. 12, 123515, 45 pp. arXiv:math-ph/0608018 (2006). Zbl 1112.17007, MR 2285164
Reference: [14] Segal I. E.: A class of operator algebras determined by groups.Duke Math. J. 18 (1951), 221–265. MR 0045133
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_3.pdf 257.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo