Previous |  Up |  Next

Article

Title: Jet isomorphism for conformal geometry (English)
Author: Graham, Robin C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 389-415
Summary lang: English
.
Category: math
.
Summary: Jet isomorphism theorems for conformal geometry are discussed. A new proof of the jet isomorphism theorem for odd-dimensional conformal geometry is outlined, using an ambient realization of the conformal deformation complex. An infinite order ambient lift for conformal densities in the case in which harmonic extension is obstructed is described. A jet isomorphism theorem for even dimensional conformal geometry is formulated using the inhomogeneous ambient metrics recently introduced by the author and K. Hirachi. (English)
Keyword: conformal geometry
Keyword: ambient metric
Keyword: jet isomorphism
Keyword: deformation complex
MSC: 53B20
idZBL: Zbl 1199.53044
idMR: MR2381784
.
Date available: 2008-06-06T22:51:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108080
.
Reference: [1] Bailey T. N., Eastwood M. G., Graham C. R.: Invariant theory for conformal and CR geometry.Ann. of Math. (2) 139 (1994), 491–552. Zbl 0814.53017, MR 1283869
Reference: [2] Branson T., Gover A. R.: Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature.Comm. P.D.E. 30 (2005), 1611–1669, arXiv:math/0309085. Zbl 1226.58011, MR 2182307
Reference: [3] Calderbank D. M. J., Diemer T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158. Zbl 0985.58002, MR 1856258
Reference: [4] Čap A., Gover A. R.: Standard tractors and the conformal ambient metric construction.Ann. Global Anal. Geom. 24 (2003), 231–259, arXiv:math/0207016. Zbl 1039.53021, MR 1996768
Reference: [5] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences.Ann. of Math. (2) 154 (2001), 97–113. MR 1847589
Reference: [6] Eastwood M. G., Graham C. R.: Invariants of conformal densities.Duke Math. J. 63 (1991), 633–671. Zbl 0745.53007, MR 1121149
Reference: [7] Epstein D.: Natural tensors on Riemannian manifolds.J. Differential Geom. 10 (1975), 631–645. Zbl 0321.53039, MR 0415531
Reference: [8] Fefferman C.,: Parabolic invariant theory in complex analysis.Adv. Math. 31 (1979), 131–262. Zbl 0444.32013, MR 0526424
Reference: [9] Fefferman C., Graham C. R.: Conformal invariants.in The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, 1985, Numero Hors Serie, 95–116. MR 0837196
Reference: [10] Fefferman C., Graham C. R.: The ambient metric.arXiv:0710.0919.
Reference: [11] Gasqui J., Goldschmidt H.: Déformations Infinitésimales des Structures Conformes Plates.Prog. Math. 52, Birkhäuser, 1984. Zbl 0585.53001, MR 0776970
Reference: [12] Gover A. R.: Invariant theory and calculus for conformal geometries.Adv. Math. 163 (2001), 206–257. Zbl 1004.53010, MR 1864834
Reference: [13] Gover A. R., Peterson L. J.: The ambient obstruction tensor and the conformal deformation complex.Pacific J. Math. 226 (2006), 309–351, arXiv:math/0408229. Zbl 1125.53010, MR 2247867
Reference: [14] Graham C. R., Hirachi K.: Inhomogeneous ambient metrics.IMA Vol. Math. Appl. 144: Symmetries and Overdetermined Systems of Partial Differential Equations, Springer, to appear, arXiv:math/0611931. Zbl 1148.53023, MR 2384722
Reference: [15] Graham C. R., Hirachi K.: Ambient realization of conformal jets and deformation complex.in preparation.
Reference: [16] Hirachi K.: Construction of boundary invariants and the logarithmic singularity of the Bergman kernel.Ann. of Math. (2) 151 (2000), 151–191, arXiv:math/0010014. MR 1745015
Reference: [17] Lepowsky J.: A generalization of the Bernstein-Gelfand-Gelfand resolution.J. Algebra 49 (1977), 496–511. Zbl 0381.17006, MR 0476813
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_6.pdf 379.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo