Previous |  Up |  Next

Article

Title: Unduloids and their geometry (English)
Author: Hadzhilazova, Mariana
Author: Mladenov, Ivaïlo M.
Author: Oprea, John
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 417-429
Summary lang: English
.
Category: math
.
Summary: In this paper we consider non-compact cylinder-like surfaces called unduloids and study some aspects of their geometry. In particular, making use of a Kenmotsu-type representation of these surfaces, we derive explicit formulas for the lengths and areas of arbitrary segments, along with a formula for the volumes enclosed by them. (English)
Summary: ï ()
Keyword: mean curvature
Keyword: unduloid
MSC: 49Q10
MSC: 53-04
MSC: 53A05
MSC: 53C42
MSC: 53Cxx
idZBL: Zbl 1199.53008
idMR: MR2381785
.
Date available: 2008-06-06T22:52:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108081
.
Reference: [1] Bar-Ziv R., Moses E.: Instability and “pearling” states produced in tubular membranes by competition of curvature and tension.Phys. Rev. Lett. 73 (1994), 1392–1395.
Reference: [2] Delaunay C.: Sur la surface de revolution dont la courbure moyenne est constante.J. Math. Pures et Appliquées 6 (1841), 309–320.
Reference: [3] Deuling H., Helfrich W.: A Theoretical explanation for the Myelin shapes of red Blood Cells.Blood Cells 3 (1977), 713–720.
Reference: [4] Eells J.: The surfaces of Delaunay.Math. Intelligencer 9 (1987), 53–57. Zbl 0605.53002, MR 0869541
Reference: [5] Grason G., Santangelo C.: Undulated cylinders of charged diblock copolymers.Eur. Phys. J. E 20 (2006), 335–346.
Reference: [6] Hadzhilazova M., Mladenov I.: Surface Tension via Cole’s experiment.In: Proceedings of the Tenth International Summer School of Chemical Engeneering, Sofia, 2004, 195–200.
Reference: [7] Isenberg C.: The Science of Soap Films and Soap Bubbles.Dover, New York, 1992.
Reference: [8] Janhke E., Emde F., Lösch F.: Tafeln höherer Funktionen.Teubner, Stuttgart, 1960.
Reference: [9] Kenmotsu K.: Surfaces of revolution with prescribed mean curvature.T$\hat{\mml@font@upright o}$hoku Math. J. 32 (1980), 147–153. Zbl 0431.53005, MR 0567837
Reference: [10] Mladenov I., Oprea J.: Unduloids and their closed geodesics.In: Proceedings of the Fourth International Conference on Geometry, Integrability and Quantization, Coral Press, Sofia, 2003, 206–234. Zbl 1051.53005, MR 1977569
Reference: [11] Mladenov I., Oprea J.: The Mylar balloon: New viewpoints and generalizations.In: Geometry, Integrability and Quantization VIII, SOFTEX, Sofia, 2007, 246–263. Zbl 1123.53006, MR 2341209
Reference: [12] Oprea J.: Differential Geometry and Its Applications.Mathematical Association of America, Washington D. C., 2007. Zbl 1153.53001, MR 2327126
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_7.pdf 410.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo