Title:
|
Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds (English) |
Author:
|
Krýsl, Svatopluk |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
5 |
Year:
|
2007 |
Pages:
|
467-484 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator. (English) |
Keyword:
|
symplectic Dirac operator |
Keyword:
|
symplectic Rarita-Schwinger operator |
Keyword:
|
Kostant symplectic spinors |
MSC:
|
35N10 |
MSC:
|
53D05 |
MSC:
|
58J05 |
MSC:
|
58J50 |
MSC:
|
58Jxx |
idZBL:
|
Zbl 1199.58011 |
idMR:
|
MR2381789 |
. |
Date available:
|
2008-06-06T22:52:14Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108085 |
. |
Reference:
|
[1] Baldoni W.: General represenation theory of real reductive Lie groups.In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. MR 1476492 |
Reference:
|
[2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application.Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. MR 1297597 |
Reference:
|
[3] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring.Phys. Lett. B, 225 (1989), 57–65. MR 1006387 |
Reference:
|
[4] Howe R.: $\theta $-correspondence and invariance theory.Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. MR 0546602 |
Reference:
|
[5] Habermann K.: The Dirac operator on symplectic spinors.Ann. Global Anal. Geom. 13 (1995), 155–168. Zbl 0842.58042, MR 1336211 |
Reference:
|
[6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators.Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. Zbl 1102.53032, MR 2252919 |
Reference:
|
[7] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry.Ph.D. thesis, Charles University of Prague, Prague, 2001. |
Reference:
|
[8] Kashiwara M., Schmid W.: Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups.In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. MR 1327544 |
Reference:
|
[9] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials.Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. MR 0463359 |
Reference:
|
[10] Kostant B.: Symplectic Spinors.Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. Zbl 0321.58015, MR 0400304 |
Reference:
|
[11] Krýsl S.: Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$.J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. MR 2286881 |
Reference:
|
[12] Krýsl S.: Symplectic spinor valued forms and operators acting between them.Arch. Math.(Brno) 42 (2006), 279–290. MR 2322414 |
Reference:
|
[13] Krýsl S.: Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries.to appear in J. Differential Geom. Appl. MR 2458281 |
Reference:
|
[14] Reuter M.: Symplectic Dirac-Kähler Fields.J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. Zbl 0968.81037, MR 1722329 |
Reference:
|
[15] Rudnick S.: Symplektische Dirac-Operatoren auf symmetrischen Räumen.Diploma Thesis, University of Greifswald, Greifswald, 2005. |
Reference:
|
[16] Schmid W.: Boundary value problems for group invariant differential equations.Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. Zbl 0621.22014, MR 0837206 |
Reference:
|
[17] Severa V.: Invariant differential operators on spinor-valued differential forms.Ph.D. thesis, Charles University of Prague, Prague, 1998. |
Reference:
|
[18] Sommen F., Souček V.: Monogenic differential forms.Complex Variables Theory Appl. 19 (1992), 81–90. Zbl 0765.30032, MR 1228331 |
Reference:
|
[19] Tirao J., Vogan D. A., Wolf J. A.: Geometry and Representation Theory of Real and $p$-Adic Groups.Birkhäuser, 1997. MR 1486131 |
Reference:
|
[20] Vogan D.: Unitary representations and complex analysis.electronically available at http://www-math.mit.edu/$\sim $dav/venice.pdf. Zbl 1143.22002 |
Reference:
|
[21] Weil A.: Sur certains groups d’opérateurs unitaires.Acta Math. 111 (1964), 143–211. MR 0165033 |
Reference:
|
[22] Woodhouse N. M. J.: Geometric quantization.2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. Zbl 0907.58026, MR 1183739 |
. |