Previous |  Up |  Next

Article

Title: Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds (English)
Author: Krýsl, Svatopluk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 467-484
Summary lang: English
.
Category: math
.
Summary: Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator. (English)
Keyword: symplectic Dirac operator
Keyword: symplectic Rarita-Schwinger operator
Keyword: Kostant symplectic spinors
MSC: 35N10
MSC: 53D05
MSC: 58J05
MSC: 58J50
MSC: 58Jxx
idZBL: Zbl 1199.58011
idMR: MR2381789
.
Date available: 2008-06-06T22:52:14Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108085
.
Reference: [1] Baldoni W.: General represenation theory of real reductive Lie groups.In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. MR 1476492
Reference: [2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application.Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. MR 1297597
Reference: [3] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring.Phys. Lett. B, 225 (1989), 57–65. MR 1006387
Reference: [4] Howe R.: $\theta $-correspondence and invariance theory.Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. MR 0546602
Reference: [5] Habermann K.: The Dirac operator on symplectic spinors.Ann. Global Anal. Geom. 13 (1995), 155–168. Zbl 0842.58042, MR 1336211
Reference: [6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators.Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. Zbl 1102.53032, MR 2252919
Reference: [7] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry.Ph.D. thesis, Charles University of Prague, Prague, 2001.
Reference: [8] Kashiwara M., Schmid W.: Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups.In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. MR 1327544
Reference: [9] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials.Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. MR 0463359
Reference: [10] Kostant B.: Symplectic Spinors.Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. Zbl 0321.58015, MR 0400304
Reference: [11] Krýsl S.: Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$.J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. MR 2286881
Reference: [12] Krýsl S.: Symplectic spinor valued forms and operators acting between them.Arch. Math.(Brno) 42 (2006), 279–290. MR 2322414
Reference: [13] Krýsl S.: Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries.to appear in J. Differential Geom. Appl. MR 2458281
Reference: [14] Reuter M.: Symplectic Dirac-Kähler Fields.J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. Zbl 0968.81037, MR 1722329
Reference: [15] Rudnick S.: Symplektische Dirac-Operatoren auf symmetrischen Räumen.Diploma Thesis, University of Greifswald, Greifswald, 2005.
Reference: [16] Schmid W.: Boundary value problems for group invariant differential equations.Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. Zbl 0621.22014, MR 0837206
Reference: [17] Severa V.: Invariant differential operators on spinor-valued differential forms.Ph.D. thesis, Charles University of Prague, Prague, 1998.
Reference: [18] Sommen F., Souček V.: Monogenic differential forms.Complex Variables Theory Appl. 19 (1992), 81–90. Zbl 0765.30032, MR 1228331
Reference: [19] Tirao J., Vogan D. A., Wolf J. A.: Geometry and Representation Theory of Real and $p$-Adic Groups.Birkhäuser, 1997. MR 1486131
Reference: [20] Vogan D.: Unitary representations and complex analysis.electronically available at http://www-math.mit.edu/$\sim $dav/venice.pdf. Zbl 1143.22002
Reference: [21] Weil A.: Sur certains groups d’opérateurs unitaires.Acta Math. 111 (1964), 143–211. MR 0165033
Reference: [22] Woodhouse N. M. J.: Geometric quantization.2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. Zbl 0907.58026, MR 1183739
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_11.pdf 316.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo