Title:
|
On local geometry of finite multitype hypersurfaces (English) |
Author:
|
Kolář, Martin |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
5 |
Year:
|
2007 |
Pages:
|
459-466 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in $\mathbb C^{n+1}$. We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given. (English) |
Keyword:
|
finite type |
Keyword:
|
Catlin’s multitype |
Keyword:
|
model hypersurfaces |
Keyword:
|
biholomorphic equivalence |
Keyword:
|
decoupled domains |
MSC:
|
32V15 |
MSC:
|
32V35 |
MSC:
|
32V40 |
MSC:
|
32Vxx |
idZBL:
|
Zbl 1199.32042 |
idMR:
|
MR2381788 |
. |
Date available:
|
2008-06-06T22:52:11Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108084 |
. |
Reference:
|
[1] Bloom T., Graham I.: A geometric characterization of points of type $m$ on real submanifolds of $C^{n}$.J. Differential Geometry 12 (1977), no. 2, 171–182. MR 0492369 |
Reference:
|
[2] Bloom T.: On the contact between complex manifolds and real hyp in $C^{3}$.Trans. Amer. Math. Soc. 263 (1981), no. 2, 515–529. MR 0594423 |
Reference:
|
[3] Boas H. P., Straube E. J., Yu J. Y.: Boundary limits of the Bergman kernel and metric.Michigan Math. J. 42 (1995), no. 3, 449–461. Zbl 0853.32028, MR 1357618 |
Reference:
|
[4] Catlin D.: Boundary invariants of pseudoconvex domains.Ann. Math. 120 (1984), 529–586. Zbl 0583.32048, MR 0769163 |
Reference:
|
[5] D’Angelo J.: Orders od contact, real hypersurfaces and applications.Ann. Math. 115 (1982), 615–637. MR 0657241 |
Reference:
|
[6] Diedrich K., Herbort G.: Pseudoconvex domains of semiregular type.in Contributions to Complex Analysis and Analytic geometry (1994), 127–161. MR 1319347 |
Reference:
|
[7] Diedrich K., Herbort G.: An alternative proof of a theorem by Boas-Straube-Yu.in Complex Analysis and Geometry, Trento 1995, Pitman Research Notes Math. Ser. |
Reference:
|
[8] Fornaess J. E., Stensones B.: Lectures on Counterexamples in Several Complex Variables.Princeton Univ. Press 1987. MR 0895821 |
Reference:
|
[9] Isaev A., Krantz S. G.: Domains with non-compact automorphism groups: a survey.Adv. Math. 146 (1999), 1–38. MR 1706680 |
Reference:
|
[10] Kohn J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two.J. Differential Geom. 6 (1972), 523–542. MR 0322365 |
Reference:
|
[11] Kolář M.: Convexifiability and supporting functions in ${\mathbb{C}}^2$.Math. Res. Lett. 2 (1995), 505–513. MR 1355711 |
Reference:
|
[12] Kolář M.: Generalized models and local invariants of Kohn Nirenberg domains.to appear in Math. Z. Zbl 1137.32014, MR 2390081 |
Reference:
|
[13] Kolář M.: On local convexifiability of type four domains in ${\mathbb{C}}^2$.Differential Geometry and Applications, Proceeding of Satellite Conference of ICM in Berlin 1999, 361–371. MR 1708924 |
Reference:
|
[14] Kolář M.: Necessary conditions for local convexifiability of pseudoconvex domains in ${\mathbb{C}}^2$.Rend. Circ. Mat. Palermo 69 (2002), 109–116. MR 1972429 |
Reference:
|
[15] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$.Math. Res. Lett. 12 (2005), 523–542. |
Reference:
|
[16] Nikolov N.: Biholomorphy of the model domains at a semiregular boundary point.C.R. Acad. Bulgare Sci. 55 (2002), no. 5, 5–8. Zbl 1010.32018, MR 1938822 |
Reference:
|
[17] Yu J.: Peak functions on weakly pseudoconvex domains.Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295. Zbl 0828.32003, MR 1322619 |
. |