Title:
|
Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions (English) |
Author:
|
Belarbi, Abdelkader |
Author:
|
Benchohra, Mouffak |
Author:
|
Ouahab, Abdelghani |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
1-7 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem. (English) |
Keyword:
|
multiple solutions |
Keyword:
|
Leggett-Williams fixed point theorem |
Keyword:
|
nonlinear boundary value problem |
Keyword:
|
integral boundary conditions |
MSC:
|
34B10 |
MSC:
|
34B15 |
MSC:
|
34B18 |
MSC:
|
34B27 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1212.34051 |
idMR:
|
MR2431225 |
. |
Date available:
|
2008-06-06T22:52:23Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108090 |
. |
Reference:
|
[1] Agarwal, R. P., O’Regan, D.: Existence of three solutions to integral and discrete equations via the Leggett-Williams fixed point theorem.Rocky Mountain J. Math. 31 (2001), 23–35. Zbl 0979.45003, MR 1821365, 10.1216/rmjm/1008959665 |
Reference:
|
[2] Agarwal, R. P., O’Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer Academic Publishers, Dordrecht, 1999. MR 1680024 |
Reference:
|
[3] Ahmad, B, Khan, R. A., Sivasundaram, S.: Generalized quasilinearization method for a first order differential equation with integral boundary condition.Dynam. Contin. Discrete Impuls. Systems, Ser. A Math. Anal. 12 (2005), 289–296. Zbl 1084.34007, MR 2170414 |
Reference:
|
[4] Anderson, D., Avery, R., Peterson, A.: Three positive solutions to a discrete focal boundary value problem. Positive solutions of nonlinear problems.J. Comput. Appl. Math. 88 (1998), 103–118. MR 1609058, 10.1016/S0377-0427(97)00201-X |
Reference:
|
[5] Brykalov, S. A.: A second order nonlinear problem with two-point and integral boundary conditions.Georgian Math. J. 1 (1994), 243–249. Zbl 0807.34021, 10.1007/BF02254673 |
Reference:
|
[6] Denche, M., Marhoune, A. L.: High-order mixed-type differential equations with weighted integral boundary conditions.Electron. J. Differential Equations 60 (2000), 1–10. Zbl 0967.35101, MR 1787207 |
Reference:
|
[7] Gallardo, J. M.: Second-order differential operators with integral boundary conditions and generation of analytic semigroups.Rocky Mountain J. Math. 30 (2000), 265–1291. Zbl 0984.34014, MR 1810167 |
Reference:
|
[8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones.Academic Press, San Diego, 1988. Zbl 0661.47045, MR 0959889 |
Reference:
|
[9] Karakostas, G. L., Tsamatos, P. Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems.Electron. J. Differential Equations 30 (2002), 17. Zbl 0998.45004, MR 1907706 |
Reference:
|
[10] Khan, R. A.: The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions.Electron. J. Qual. Theory Differ. Equ. 19 (2003), 15. Zbl 1055.34033, MR 2039793 |
Reference:
|
[11] Krall, A. M.: The adjoint of a differential operator with integral boundary condition.Proc. Amer. Math. Soc. 16 (1965), 738–742. MR 0181794, 10.1090/S0002-9939-1965-0181794-9 |
Reference:
|
[12] Leggett, R. W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces.Indiana Univ. Math. J. 28 (1979), 673–688. Zbl 0421.47033, MR 0542951, 10.1512/iumj.1979.28.28046 |
Reference:
|
[13] Lomtatidze, A., Malaguti, L.: On a nonlocal boundary value problem for second order nonlinear singular differential equations.Georgian Math. J. 7 (2000), 133–154. Zbl 0967.34011, MR 1768050 |
. |