Previous |  Up |  Next

Article

Title: On endomorphisms of multiplication and comultiplication modules (English)
Author: Ansari-Toroghy, H.
Author: Farshadifar, F.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 9-15
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring with an identity (not necessarily commutative) and let $M$ be a left $R$-module. This paper deals with multiplication and comultiplication left $R$-modules $M$ having right $\operatorname{End}_R(M)$-module structures. (English)
Keyword: endomorphisms
Keyword: multiplication modules
Keyword: comultiplication modules
MSC: 13C99
idZBL: Zbl 1212.13006
idMR: MR2431226
.
Date available: 2008-06-06T22:52:26Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/108091
.
Reference: [1] Anderson, W., Fuller, K. R.: Rings and categories of modules.Springer-Verlag, New York-Heidelberg-Berlin, 1974. Zbl 0301.16001, MR 0417223
Reference: [2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules.Taiwanese J. Math. (to appear). Zbl 1137.16302, MR 2348561
Reference: [3] Bae, Soon-Sook: On submodule inducing prime ideals of endomorphism ring.East Asian Math. 16 (1) (2000), 33–48.
Reference: [4] Choi, C. W.: Multiplication modules and endomorphisms.Math. J. Toyama Univ. 18 (1995), 1–8. Zbl 0876.13001, MR 1369692
Reference: [5] Choi, C. W., Smith, P. F.: On endomorphisms of multiplication modules.J. Korean Math. Soc. 31 (1) (1994), 89–95. Zbl 0820.13003, MR 1269453
Reference: [6] Faith, C.: Algebra II: Ring theory.Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0427349
Reference: [7] Ghorbani, A., Haghang, A.: Generalized Hopfian modules.J. Algebra 255 (2002), 324–341. MR 1935502, 10.1016/S0021-8693(02)00124-2
Reference: [8] Haghang, A., Vedali, M. R.: Modules whose injective endomorphism are essential.J. Algebra 243 (2001), 765–779. MR 1850657, 10.1006/jabr.2001.8851
Reference: [9] Lomp, Ch. E.: Prime elements in partially ordered groupoid applied to modules and Hopf algebra actions.J. Algebra Appl. 4 (1) (2005), 77–98. MR 2130464, 10.1142/S0219498805001022
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_2.pdf 435.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo