Previous |  Up |  Next

Article

Title: The jet prolongations of $2$-fibred manifolds and the flow operator (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 17-21
Summary lang: English
.
Category: math
.
Summary: Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$. (English)
Keyword: $(s,r)$-jet
Keyword: bundle functor
Keyword: natural operator
Keyword: flow operator
Keyword: $2$-fibred manifold
Keyword: $2$-projectable vector field
MSC: 58A20
idZBL: Zbl 1212.58003
idMR: MR2431227
.
Date available: 2008-06-06T22:52:33Z
Last updated: 2014-06-02
Stable URL: http://hdl.handle.net/10338.dmlcz/108092
.
Reference: [1] Cabras, A., Janyška, J., Kolář, I.: On the geometry of variational calculus on some functional bundles.Note Mat. 26 (2) (2006), 51–57. Zbl 1195.58007, MR 2298069
Reference: [2] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag Berlin, 1993. MR 1202431
Reference: [3] Mikulski, W. M.: The jet prolongations of fibered manifolds and the flow operator.Publ. Math. Debrecen 59 (2001), 441–458. MR 1874443
Reference: [4] Mikulski, W. M.: The natural operators lifting projectable vector fields to some fiber product preserving bundles.Ann. Polon. Math. 81 (3) (2003), 261–271. Zbl 1099.58003, MR 2044627, 10.4064/ap81-3-4
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_3.pdf 459.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo