Previous |  Up |  Next

Article

Title: Notes on countable extensions of $p^{\omega +n}$-projectives (English)
Author: Danchev, Peter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 37-40
Summary lang: English
.
Category: math
.
Summary: We prove that if $G$ is an Abelian $p$-group of length not exceeding $\omega $ and $H$ is its $p^{\omega +n}$-projective subgroup for $n\in {\mathbb{N}} \cup \lbrace 0\rbrace $ such that $G/H$ is countable, then $G$ is also $p^{\omega +n}$-projective. This enlarges results of ours in (Arch. Math. (Brno), 2005, 2006 and 2007) as well as a classical result due to Wallace (J. Algebra, 1971). (English)
Keyword: abelian groups
Keyword: countable factor-groups
Keyword: $p^{\omega +n}$-projective groups
MSC: 20K10
MSC: 20K25
MSC: 20K27
MSC: 20K35
MSC: 20K40
idZBL: Zbl 1203.20046
idMR: MR2431229
.
Date available: 2008-06-06T22:52:40Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/108094
.
Reference: [1] Danchev, P.: Countable extensions of torsion abelian groups.Arch. Math. (Brno) 41 (3) (2005), 265–272. Zbl 1114.20030, MR 2188382
Reference: [2] Danchev, P.: Generalized Dieudonné criterion.Acta Math. Univ. Comenian. 74 (1) (2005), 15–26. Zbl 1111.20045, MR 2154393
Reference: [3] Danchev, P.: A note on the countable extensions of separable $p^{\omega +n}$-projective abelian $p$-groups.Arch. Math. (Brno) 42 (3) (2006), 251–254. Zbl 1152.20045, MR 2260384
Reference: [4] Danchev, P.: On countable extensions of primary abelian groups.Arch. Math. (Brno) 43 (1) (2007), 61–66. Zbl 1156.20044, MR 2310125
Reference: [5] Danchev, P., Keef, P.: Generalized Wallace theorems.Math. Scand. (to appear). MR 2498370
Reference: [6] Dieudonné, J.: Sur les $p$-groupes abeliens infinis.Portugal. Math. 11 (1) (1952), 1–5. MR 0046356
Reference: [7] Fuchs, L.: Infinite Abelian Groups, I, II.Mir, Moskva, 1974 and 1977, (in Russian). MR 0457533
Reference: [8] Fuchs, L.: Subfree valued vector spaces.Lecture Notes in Math. 616 (1977), 158–167. Zbl 0389.15001, MR 0480700, 10.1007/BFb0068194
Reference: [9] Hill, P., Megibben, C.: Extensions of torsion-complete groups.Proc. Amer. Math. Soc. 44 (2) (1974), 259–262. Zbl 0292.20050, MR 0340452, 10.1090/S0002-9939-1974-0340452-3
Reference: [10] Nunke, R.: Topics in Abelian Groups.ch. Purity and subfunctors of the identity, pp. 121–171, Scott, Foresman and Co., Chicago, 1963. MR 0169913
Reference: [11] Nunke, R.: Homology and direct sums of countable abelian groups.Math. Z. 101 (3) (1967), 182–212. Zbl 0173.02401, MR 0218452, 10.1007/BF01135839
Reference: [12] Wallace, K.: On mixed groups of torsion-free rank one with totally projective primary components.J. Algebra 17 (4) (1971), 482–488. Zbl 0215.39902, MR 0272891, 10.1016/0021-8693(71)90005-6
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_5.pdf 407.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo