[1] A. Ambrosetti, G. Prodi: Analiѕi non linеarе. (I quadегno), Piѕa 1973.
[2] A. Ambrosetti, G. Prodi: 
On thе invеrѕion of ѕomе diffеrеntiablе mappingѕ with ѕingularitiеѕ bеtwееn Banaсh ѕpaсеѕ. Annali Mat. Pura Appl. 93, 1973, 231 - 247; ѕее alѕo Thеory of nonlinеar opеratorѕ, Proсееdingѕ of a Summеr Sсhool hеld in Sеptеmbеr 1971 at Babylon, Czесhoѕlovakia, Praguе 1973, pp. 9-28. 
MR 0383450[3] H. Ehrmann: 
Übеr die Exiѕtеnz dег Löѕungеn von Randwеrtaufgabеn bеi gеwöhnliсhеn niсhtlinеarеn Diffеrеntialglеiсhungеn zwеitеr Ordnung. Math. Annalеn 134, 1957, 167-194. 
MR 0092056[4] S. Fučík: 
Nonlinеar еquationѕ with noninvеrtiblе linеar part. Czесh. Math. Jouгnal 24 (99) 1974, 467-495. 
MR 0348568[5] S. Fučík, M. Kučera, J. Nečas: 
Ranges of nonlinear asymptotically linear operators. Journ. Diff. Equations 17, 1975, 375-394. 
MR 0372696[6] S. Fučík, J. Nečas, J. Souček, V. Souček: 
Spectral analysis of nonlinear operators. Lecture Notes in Mathematics No 346, Springer Verlag 1973. 
MR 0467421[7] M. A. Krasnoselskij: Topological methods in the theory of nonlinear integral equations. Pergamon Press Book 1964.
[8] E. M. Landesman, A. C. Lazer: 
Linear eigenvalues and a nonlinear boundary value problem. Pac. J. Math. 33, 1970, 311-328. 
MR 0279434 | 
Zbl 0204.12002[9] E. M. Landesman, A. C. Lazer: 
Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 1970, 609-623. 
MR 0267269 | 
Zbl 0193.39203[10] A. C. Lazer, D. E. Leach: 
On a nonlinear two-point boundary value problem. J. Math. Anal. Appl. 26, 1969, 20-27. 
MR 0237865 | 
Zbl 0195.37701[11] J. Leray, J. L. Lions: 
Quelques resultats de Višik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder. Bull. Soc. Math. France 93, 1965, 97-107. 
MR 0194733 | 
Zbl 0132.10502[12] A. Manes, A. Micheletti: 
Un estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Unione Mat. Ital. 7, 1973, 285 - 301. 
MR 0344663 | 
Zbl 0275.49042[13] J. Nečas: 
On the range of nonlinear operators with linear asymptotes which are not invertible. Comment. Math. Univ. Carolinae 14, 1973, 63 - 72. 
MR 0318995