Previous |  Up |  Next

Article

Title: Limiting behavior of global attractors for singularly perturbed beam equations with strong damping (English)
Author: Ševčovič, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 45-60
.
Category: math
.
Summary: The limiting behavior of global attractors $\Cal A_\varepsilon $ for singularly perturbed beam equations $$\varepsilon^2 \frac{\partial^2u}{\partial t^2}+ \varepsilon\delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha Au+g(\|u\|_{1/4}^2)A^{1/2}u=0 $$ is investigated. It is shown that for any neighborhood $\Cal U$ of $\Cal A_0$ the set $\Cal A_\varepsilon$ is included in $\Cal U$ for $\varepsilon$ small. (English)
Keyword: strongly damped beam equation
Keyword: compact attractor
Keyword: upper semicontinuity of global attractors
MSC: 35B25
MSC: 35B40
MSC: 35Q20
MSC: 35Q72
MSC: 37C70
MSC: 47H20
MSC: 73K05
MSC: 74H45
MSC: 74K10
idZBL: Zbl 0741.35089
idMR: MR1118289
.
Date available: 2008-10-09T13:10:59Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116942
.
Reference: [BV] Babin A.B., Vishik M.N.: Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian).Uspechi mat. nauk 38 (1983), 133-185. MR 0710119
Reference: [B1] Ball J.M.: Initial-boundary value problems for an extensible beam.J. Math. Anal. Appl. 42 (1973), 61-96. Zbl 0254.73042, MR 0319440
Reference: [B2] Ball J.M.: Stability theory for an extensible beam.J. of Diff. Equations 14 (1973), 399-418. Zbl 0247.73054, MR 0331921
Reference: [ChL] Chow S.-N., Lu K.: Invariant manifolds for flows in Banach spaces.J. of Diff. Equations 74 (1988), 285-317. Zbl 0691.58034, MR 0952900
Reference: [F] Fitzgibbon W.E.: Strongly damped quasilinear evolution equations.J. of Math. Anal. Appl. 79 (1981), 536-550. Zbl 0476.35040, MR 0606499
Reference: [GT] Ghidaglia J.M., Temam R.: Attractors for damped nonlinear hyperbolic equations.J. de Math. Pures et Appl. 79 (1987), 273-319. Zbl 0572.35071, MR 0913856
Reference: [H] Henry D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Math. 840, Springer Verlag. Zbl 0663.35001, MR 0610244
Reference: [HR1] Hale J.K., Rougel G.: Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations.J. of Diff. Equations 73 (1988), 197-215. MR 0943939
Reference: [HR2] Hale J.K., Rougel G.: Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations.Journal of Dynamics and Diff. Equations 2 (1990), 16-69. MR 1041197
Reference: [M1] Massat P.: Limiting behavior for strongly damped nonlinear wave equations.J. of Diff. Equations 48 (1983), 334-349. MR 0702424
Reference: [M2] Massat P.: Attractivity properties of $\alpha $-contractions.J. of Diff. Equations 48 (1983), 326-333. MR 0702423
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_7.pdf 261.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo