Title:
|
Limiting behavior of global attractors for singularly perturbed beam equations with strong damping (English) |
Author:
|
Ševčovič, Daniel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
1 |
Year:
|
1991 |
Pages:
|
45-60 |
. |
Category:
|
math |
. |
Summary:
|
The limiting behavior of global attractors $\Cal A_\varepsilon $ for singularly perturbed beam equations $$\varepsilon^2 \frac{\partial^2u}{\partial t^2}+ \varepsilon\delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha Au+g(\|u\|_{1/4}^2)A^{1/2}u=0 $$ is investigated. It is shown that for any neighborhood $\Cal U$ of $\Cal A_0$ the set $\Cal A_\varepsilon$ is included in $\Cal U$ for $\varepsilon$ small. (English) |
Keyword:
|
strongly damped beam equation |
Keyword:
|
compact attractor |
Keyword:
|
upper semicontinuity of global attractors |
MSC:
|
35B25 |
MSC:
|
35B40 |
MSC:
|
35Q20 |
MSC:
|
35Q72 |
MSC:
|
37C70 |
MSC:
|
47H20 |
MSC:
|
73K05 |
MSC:
|
74H45 |
MSC:
|
74K10 |
idZBL:
|
Zbl 0741.35089 |
idMR:
|
MR1118289 |
. |
Date available:
|
2008-10-09T13:10:59Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116942 |
. |
Reference:
|
[BV] Babin A.B., Vishik M.N.: Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian).Uspechi mat. nauk 38 (1983), 133-185. MR 0710119 |
Reference:
|
[B1] Ball J.M.: Initial-boundary value problems for an extensible beam.J. Math. Anal. Appl. 42 (1973), 61-96. Zbl 0254.73042, MR 0319440 |
Reference:
|
[B2] Ball J.M.: Stability theory for an extensible beam.J. of Diff. Equations 14 (1973), 399-418. Zbl 0247.73054, MR 0331921 |
Reference:
|
[ChL] Chow S.-N., Lu K.: Invariant manifolds for flows in Banach spaces.J. of Diff. Equations 74 (1988), 285-317. Zbl 0691.58034, MR 0952900 |
Reference:
|
[F] Fitzgibbon W.E.: Strongly damped quasilinear evolution equations.J. of Math. Anal. Appl. 79 (1981), 536-550. Zbl 0476.35040, MR 0606499 |
Reference:
|
[GT] Ghidaglia J.M., Temam R.: Attractors for damped nonlinear hyperbolic equations.J. de Math. Pures et Appl. 79 (1987), 273-319. Zbl 0572.35071, MR 0913856 |
Reference:
|
[H] Henry D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Math. 840, Springer Verlag. Zbl 0663.35001, MR 0610244 |
Reference:
|
[HR1] Hale J.K., Rougel G.: Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations.J. of Diff. Equations 73 (1988), 197-215. MR 0943939 |
Reference:
|
[HR2] Hale J.K., Rougel G.: Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations.Journal of Dynamics and Diff. Equations 2 (1990), 16-69. MR 1041197 |
Reference:
|
[M1] Massat P.: Limiting behavior for strongly damped nonlinear wave equations.J. of Diff. Equations 48 (1983), 334-349. MR 0702424 |
Reference:
|
[M2] Massat P.: Attractivity properties of $\alpha $-contractions.J. of Diff. Equations 48 (1983), 326-333. MR 0702423 |
. |