Full entry |
PDF
(0.3 MB)
Feedback

alternative set theory; commutative $\pi $-group; free group; inverse system of Sd-classes and Sd-maps; prolongation; set-definable; tensor product; total homomorphism

Related articles:

References:

[C] McCord M.C.: **Non-standard analysis and homology**. Fund. Math. 74 (1972), 21-28. MR 0300270 | Zbl 0233.55005

[G] Garavaglia S.: **Homology with equationally compact coefficients**. Fund. Math. 100 (1978), 89-95. MR 0494066 | Zbl 0377.55006

[E-S] Eilenberg S., Steenrod N.: **Foundations of algebraic topology**. Princeton Press, 1952. MR 0050886 | Zbl 0047.41402

[H-W] Hilton P.J., Wylie S.: **Homology Theory**. Cambridge University Press, Cambridge, 1960. MR 0115161 | Zbl 0163.17803

[S-V] Sochor A., Vopěnka P.: **Endomorphic universes and their standard extensions**. Comment. Math. Univ. Carolinae 20 (1979), 605-629. MR 0555178

[V1] Vopěnka P.: **Mathematics in the alternative set theory**. Teubner-Texte, Leipzig, 1979. MR 0581368

[V2] Vopěnka P.: **Mathematics in the alternative set theory (in Slovak)**. Alfa, Bratislava, 1989.

[W] Wattenberg F.: **Non-standard analysis and the theory of shape**. Fund. Math. 98 (1978), 41-60. MR 0528354

[Ž1] Živaljevič R.T.: **Infinitesimals, microsimplexes and elementary homology theory**. AMM 93 (1986), 540-544. MR 0856293

[Ž2] Živaljevič R.T.: **On a cohomology theory based on hyperfinite sums of microsimplexes**. Pacific J. Math. 128 (1987), 201-208. MR 0883385