Title:
|
Generating real maps on a biordered set (English) |
Author:
|
Martinon, Antonio |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
2 |
Year:
|
1991 |
Pages:
|
265-272 |
. |
Category:
|
math |
. |
Summary:
|
Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \Bbb R$ from an initial one $X\rightarrow \Bbb R$, where $X$ is a set endowed with two orders, $\leq $ and $\leq ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone. (English) |
Keyword:
|
derivated map |
Keyword:
|
biordered set |
Keyword:
|
admissible order |
MSC:
|
06A06 |
MSC:
|
06A10 |
MSC:
|
47A30 |
MSC:
|
47A53 |
idZBL:
|
Zbl 0757.47013 |
idMR:
|
MR1137787 |
. |
Date available:
|
2009-01-08T17:43:53Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116964 |
. |
Reference:
|
[BG] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, Lecture Notes in Pure and Applied Math., vol.60; New York, Basel, 1980. Zbl 0441.47056, MR 0591679 |
Reference:
|
[BO] Bourbaki N.: Éléments de Mathématique. Topologie Générale.Hermann, Paris, 1971. Zbl 1107.54001, MR 0358652 |
Reference:
|
[FA] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian).Spektr. Teor. Oper. 6 (1985), 182-195 Zbl 634 #47010. |
Reference:
|
[GM1] Gonzalez M., Martinon A.: Operational quantities and operator ideals.Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 383-387. MR 1112904 |
Reference:
|
[GM2] Gonzalez M., Martinon A.: Operational quantities derived from the norm and measures of noncompactness.Proc. Royal Irish Acad., to appear. MR 1173159 |
Reference:
|
[GM3] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators.1990, preprint. |
Reference:
|
[LS] Lebow A., Schechter M.: Semigroups of operators and measures of noncompactness.J. Func. Anal. 7 (1971), 1-26. Zbl 0209.45002, MR 0273422 |
Reference:
|
[MA1] Martinon A.: Generating operational quantities in Fredholm theory.Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 449-453. MR 1112916 |
Reference:
|
[MA2] Martinon A.: Cantidades operacionales en Teoría de Fredholm (Tesis).Univ. La Laguna, 1989. MR 1067932 |
Reference:
|
[PI] Pietsch A.: Operator Ideals.North-Holland; Amsterdam, New York, Oxford, 1980. Zbl 1012.47001, MR 0582655 |
Reference:
|
[SC] Schechter M.: Quantities related to strictly singular operators.Indiana Univ. Math. J. 21 (1972), 1061-1071. Zbl 0274.47007, MR 0295103 |
Reference:
|
[SE] Sedaev A.A.: The structure of certain linear operators (in Russian).Mat. Issled. 5 (1970), 166-175 MR 43 #2540; Zbl. 247 #47005. MR 0276800 |
Reference:
|
[TY] Tylli H.-O.: On the asymptotic behaviour of some quantities related to semi-Fredholm operators.J. London Math. Soc. (2) 31 (1985), 340-348. Zbl 0582.47004, MR 0809955 |
Reference:
|
[WE] Weis L.: Über strikt singulare und strikt cosingulare Operatoren in Banachräumen (Dissertation).Univ. Bonn, 1974. |
Reference:
|
[ZE] Zemanek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour.Studia Math. 80 (1984), 219-234. Zbl 0556.47008, MR 0783991 |
. |