Previous |  Up |  Next

Article

Title: Generating real maps on a biordered set (English)
Author: Martinon, Antonio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 265-272
.
Category: math
.
Summary: Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps $X\rightarrow \Bbb R$ from an initial one $X\rightarrow \Bbb R$, where $X$ is a set endowed with two orders, $\leq $ and $\leq ^{\ast }$, related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone. (English)
Keyword: derivated map
Keyword: biordered set
Keyword: admissible order
MSC: 06A06
MSC: 06A10
MSC: 47A30
MSC: 47A53
idZBL: Zbl 0757.47013
idMR: MR1137787
.
Date available: 2009-01-08T17:43:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116964
.
Reference: [BG] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, Lecture Notes in Pure and Applied Math., vol.60; New York, Basel, 1980. Zbl 0441.47056, MR 0591679
Reference: [BO] Bourbaki N.: Éléments de Mathématique. Topologie Générale.Hermann, Paris, 1971. Zbl 1107.54001, MR 0358652
Reference: [FA] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian).Spektr. Teor. Oper. 6 (1985), 182-195 Zbl 634 #47010.
Reference: [GM1] Gonzalez M., Martinon A.: Operational quantities and operator ideals.Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 383-387. MR 1112904
Reference: [GM2] Gonzalez M., Martinon A.: Operational quantities derived from the norm and measures of noncompactness.Proc. Royal Irish Acad., to appear. MR 1173159
Reference: [GM3] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators.1990, preprint.
Reference: [LS] Lebow A., Schechter M.: Semigroups of operators and measures of noncompactness.J. Func. Anal. 7 (1971), 1-26. Zbl 0209.45002, MR 0273422
Reference: [MA1] Martinon A.: Generating operational quantities in Fredholm theory.Actas XIV Jornadas Hispano-Lusas Mat. (1989), Univ. La Laguna, vol. I, 1990, 449-453. MR 1112916
Reference: [MA2] Martinon A.: Cantidades operacionales en Teoría de Fredholm (Tesis).Univ. La Laguna, 1989. MR 1067932
Reference: [PI] Pietsch A.: Operator Ideals.North-Holland; Amsterdam, New York, Oxford, 1980. Zbl 1012.47001, MR 0582655
Reference: [SC] Schechter M.: Quantities related to strictly singular operators.Indiana Univ. Math. J. 21 (1972), 1061-1071. Zbl 0274.47007, MR 0295103
Reference: [SE] Sedaev A.A.: The structure of certain linear operators (in Russian).Mat. Issled. 5 (1970), 166-175 MR 43 #2540; Zbl. 247 #47005. MR 0276800
Reference: [TY] Tylli H.-O.: On the asymptotic behaviour of some quantities related to semi-Fredholm operators.J. London Math. Soc. (2) 31 (1985), 340-348. Zbl 0582.47004, MR 0809955
Reference: [WE] Weis L.: Über strikt singulare und strikt cosingulare Operatoren in Banachräumen (Dissertation).Univ. Bonn, 1974.
Reference: [ZE] Zemanek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour.Studia Math. 80 (1984), 219-234. Zbl 0556.47008, MR 0783991
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_8.pdf 188.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo