Title:
|
A generalization of boundedly compact metric spaces (English) |
Author:
|
Beer, Gerald |
Author:
|
Di Concilio, Anna |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
2 |
Year:
|
1991 |
Pages:
|
361-367 |
. |
Category:
|
math |
. |
Summary:
|
A metric space $\langle X,d\rangle$ is called a $\operatorname{UC}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname{UC}$ spaces play relative to the compact metric spaces. (English) |
Keyword:
|
$\operatorname{UC}$ space |
Keyword:
|
boundedly $\operatorname{UC}$ space |
Keyword:
|
boundedly compact space |
Keyword:
|
Atsuji space |
Keyword:
|
uniform continuity on bounded sets |
Keyword:
|
topology of uniform convergence on bounded sets |
Keyword:
|
Attouch--Wets topology |
MSC:
|
54B20 |
MSC:
|
54C35 |
MSC:
|
54E15 |
MSC:
|
54E45 |
idZBL:
|
Zbl 0766.54028 |
idMR:
|
MR1137797 |
. |
Date available:
|
2009-01-08T17:44:50Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116977 |
. |
Reference:
|
[At1] Atsuji M.: Uniform continuity of continuous functions on metric spaces.Pacific J. Math. 8 (1958), 11-16. MR 0099023 |
Reference:
|
[At2] Atsuji M.: Uniform continuity of continuous functions on uniform spaces.Pacific J. Math. 13 (1961), 657-663. Zbl 0102.37703, MR 0165489 |
Reference:
|
[AW] Attouch H., Wets R.: Quantitative stability of variational systems: I. The epigraphical distance.to appear, Trans. Amer. Math. Soc. Zbl 0753.49007, MR 1018570 |
Reference:
|
[ALW] Attouch H., Lucchetti R., Wets R.: The topology of the $\rho $-Hausdorff distance.to appear, Annali Mat. Pura Appl. Zbl 0769.54009 |
Reference:
|
[AP] Azé D., Penot J.-P.: Operations on convergent families of sets and functions.Optimization 21 (1990), 521-534. MR 1069660 |
Reference:
|
[Be1] Beer G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance.Proc. Amer. Math. Soc. 95 (1985), 653-658. Zbl 0594.54007, MR 0810180 |
Reference:
|
[Be2] Beer G.: More about metric spaces on which continuous functions are uniformly continuous.Bull. Australian Math. Soc. 33 (1986), 397-406. Zbl 0573.54026, MR 0837486 |
Reference:
|
[Be3] Beer G.: UC spaces revisited.Amer. Math. Monthly 95 (1988), 737-739. Zbl 0656.54022, MR 0966244 |
Reference:
|
[Be4] Beer G.: Convergence of continuous linear functionals and their level sets.Archiv der Math. 52 (1989), 482-491. Zbl 0662.46015, MR 0998621 |
Reference:
|
[Be5] Beer G.: Conjugate convex functions and the epi-distance topology.Proc. Amer. Math. Soc. 108 (1990), 117-126. Zbl 0681.46014, MR 0982400 |
Reference:
|
[BDC] Beer G., Di Concilio A.: Uniform continuity on bounded sets and the Attouch-Wets topology.to appear, Proc. Amer. Math. Soc. Zbl 0677.54007, MR 1033956 |
Reference:
|
[BHPV] Beer G., Himmelberg C., Prikry K., Van Vleck F.: The locally finite topology on $2^X$.Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 0897090 |
Reference:
|
[BL1] Beer G., Lucchetti A.: Convex optimization and the epi-distance topology.to appear, Trans. Amer. Math. Soc. Zbl 0681.46013, MR 1012526 |
Reference:
|
[BL2] Beer G., Lucchetti A.: Weak topologies for the closed subsets of a metrizable space.preprint. Zbl 0810.54011 |
Reference:
|
[CV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Mathematics No. 580, Springer-Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310 |
Reference:
|
[DCN] Di Concilio A., Naimpally S.: Atsuji spaces - continuity versus uniform continuity.in Proc. VI Brazilian Conf. on Topology, Campinǫs-Sao Paulo, August 1988. |
Reference:
|
[Ha] Hausdorff H.: Erweiterung einer Homöomorphie.Fund. Math. 16 (1930), 353-360. |
Reference:
|
[Ho] Holá L.: The Attouch-Wets topology and a characterization of normable linear spaces.to appear, Bull. Australian Math. Soc. MR 1120389 |
Reference:
|
[Hu] Hueber H.: On uniform continuity and compactness in metric spaces.Amer. Math. Monthly 88 (1981), 204-205. Zbl 0451.54024, MR 0619571 |
Reference:
|
[Le] Levine N.: Remarks on uniform continuity in metric spaces.Amer. Math. Monthly 67 (1979), 562-563. MR 0116310 |
Reference:
|
[Mi] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152-182. Zbl 0043.37902, MR 0042109 |
Reference:
|
[MP] Monteiro A., Peixoto M.: Le nombre de Lebesgue et la continuité uniforme.Portugaliae Math. 10 (1951), 105-113. Zbl 0045.25801, MR 0044608 |
Reference:
|
[Na] Nagata J.: On the uniform topology of bicompactifications.J. Inst. Polytech. Osaka City University 1 (1950), 28-38. Zbl 0041.51601, MR 0037501 |
Reference:
|
[Pe] Penot J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity.to appear, Proc. Amer. Math. Soc. Zbl 0774.54008, MR 1068129 |
Reference:
|
[Ra] Rainwater J.: Spaces whose finest uniformity is metric.Pacific J. Math. 9 (1959), 567-570. Zbl 0088.38301, MR 0106448 |
Reference:
|
[RZ] Revalski J., Zhivkov N.: Well-posed optimization problems in metric spaces.preprint. |
Reference:
|
[Se] Sendov Bl.: Hausdorff approximations.Bulgarian Academy of Sciences, Sofia, 1979 (in Russian); English version published by Kluwer, Dordrecht, Holland, 1990. Zbl 0715.41001, MR 1078632 |
Reference:
|
[To] Toader Gh.: On a problem of Nagata.Mathematica (Cluj) 20 (43) (1978), 78-79. Zbl 0409.54041, MR 0530953 |
Reference:
|
[Va] Vaughan H.: On locally compact metrizable spaces.Bull. Amer. Math. Soc. 43 (1937), 532-535. MR 1563581 |
Reference:
|
[Wa] Waterhouse W.: On UC spaces.Amer. Math. Monthly 72 (1965), 634-635. Zbl 0136.19802, MR 0184200 |
. |