Previous |  Up |  Next

Article

Title: A generalization of boundedly compact metric spaces (English)
Author: Beer, Gerald
Author: Di Concilio, Anna
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 361-367
.
Category: math
.
Summary: A metric space $\langle X,d\rangle$ is called a $\operatorname{UC}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname{UC}$ spaces play relative to the compact metric spaces. (English)
Keyword: $\operatorname{UC}$ space
Keyword: boundedly $\operatorname{UC}$ space
Keyword: boundedly compact space
Keyword: Atsuji space
Keyword: uniform continuity on bounded sets
Keyword: topology of uniform convergence on bounded sets
Keyword: Attouch--Wets topology
MSC: 54B20
MSC: 54C35
MSC: 54E15
MSC: 54E45
idZBL: Zbl 0766.54028
idMR: MR1137797
.
Date available: 2009-01-08T17:44:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116977
.
Reference: [At1] Atsuji M.: Uniform continuity of continuous functions on metric spaces.Pacific J. Math. 8 (1958), 11-16. MR 0099023
Reference: [At2] Atsuji M.: Uniform continuity of continuous functions on uniform spaces.Pacific J. Math. 13 (1961), 657-663. Zbl 0102.37703, MR 0165489
Reference: [AW] Attouch H., Wets R.: Quantitative stability of variational systems: I. The epigraphical distance.to appear, Trans. Amer. Math. Soc. Zbl 0753.49007, MR 1018570
Reference: [ALW] Attouch H., Lucchetti R., Wets R.: The topology of the $\rho $-Hausdorff distance.to appear, Annali Mat. Pura Appl. Zbl 0769.54009
Reference: [AP] Azé D., Penot J.-P.: Operations on convergent families of sets and functions.Optimization 21 (1990), 521-534. MR 1069660
Reference: [Be1] Beer G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance.Proc. Amer. Math. Soc. 95 (1985), 653-658. Zbl 0594.54007, MR 0810180
Reference: [Be2] Beer G.: More about metric spaces on which continuous functions are uniformly continuous.Bull. Australian Math. Soc. 33 (1986), 397-406. Zbl 0573.54026, MR 0837486
Reference: [Be3] Beer G.: UC spaces revisited.Amer. Math. Monthly 95 (1988), 737-739. Zbl 0656.54022, MR 0966244
Reference: [Be4] Beer G.: Convergence of continuous linear functionals and their level sets.Archiv der Math. 52 (1989), 482-491. Zbl 0662.46015, MR 0998621
Reference: [Be5] Beer G.: Conjugate convex functions and the epi-distance topology.Proc. Amer. Math. Soc. 108 (1990), 117-126. Zbl 0681.46014, MR 0982400
Reference: [BDC] Beer G., Di Concilio A.: Uniform continuity on bounded sets and the Attouch-Wets topology.to appear, Proc. Amer. Math. Soc. Zbl 0677.54007, MR 1033956
Reference: [BHPV] Beer G., Himmelberg C., Prikry K., Van Vleck F.: The locally finite topology on $2^X$.Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 0897090
Reference: [BL1] Beer G., Lucchetti A.: Convex optimization and the epi-distance topology.to appear, Trans. Amer. Math. Soc. Zbl 0681.46013, MR 1012526
Reference: [BL2] Beer G., Lucchetti A.: Weak topologies for the closed subsets of a metrizable space.preprint. Zbl 0810.54011
Reference: [CV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Mathematics No. 580, Springer-Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310
Reference: [DCN] Di Concilio A., Naimpally S.: Atsuji spaces - continuity versus uniform continuity.in Proc. VI Brazilian Conf. on Topology, Campinǫs-Sao Paulo, August 1988.
Reference: [Ha] Hausdorff H.: Erweiterung einer Homöomorphie.Fund. Math. 16 (1930), 353-360.
Reference: [Ho] Holá L.: The Attouch-Wets topology and a characterization of normable linear spaces.to appear, Bull. Australian Math. Soc. MR 1120389
Reference: [Hu] Hueber H.: On uniform continuity and compactness in metric spaces.Amer. Math. Monthly 88 (1981), 204-205. Zbl 0451.54024, MR 0619571
Reference: [Le] Levine N.: Remarks on uniform continuity in metric spaces.Amer. Math. Monthly 67 (1979), 562-563. MR 0116310
Reference: [Mi] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152-182. Zbl 0043.37902, MR 0042109
Reference: [MP] Monteiro A., Peixoto M.: Le nombre de Lebesgue et la continuité uniforme.Portugaliae Math. 10 (1951), 105-113. Zbl 0045.25801, MR 0044608
Reference: [Na] Nagata J.: On the uniform topology of bicompactifications.J. Inst. Polytech. Osaka City University 1 (1950), 28-38. Zbl 0041.51601, MR 0037501
Reference: [Pe] Penot J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity.to appear, Proc. Amer. Math. Soc. Zbl 0774.54008, MR 1068129
Reference: [Ra] Rainwater J.: Spaces whose finest uniformity is metric.Pacific J. Math. 9 (1959), 567-570. Zbl 0088.38301, MR 0106448
Reference: [RZ] Revalski J., Zhivkov N.: Well-posed optimization problems in metric spaces.preprint.
Reference: [Se] Sendov Bl.: Hausdorff approximations.Bulgarian Academy of Sciences, Sofia, 1979 (in Russian); English version published by Kluwer, Dordrecht, Holland, 1990. Zbl 0715.41001, MR 1078632
Reference: [To] Toader Gh.: On a problem of Nagata.Mathematica (Cluj) 20 (43) (1978), 78-79. Zbl 0409.54041, MR 0530953
Reference: [Va] Vaughan H.: On locally compact metrizable spaces.Bull. Amer. Math. Soc. 43 (1937), 532-535. MR 1563581
Reference: [Wa] Waterhouse W.: On UC spaces.Amer. Math. Monthly 72 (1965), 634-635. Zbl 0136.19802, MR 0184200
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_18.pdf 203.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo