Previous |  Up |  Next

Article

Title: When is every order ideal a ring ideal? (English)
Author: Henriksen, M.
Author: Larson, S.
Author: Smith, F. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 411-416
.
Category: math
.
Summary: A lattice-ordered ring $\Bbb R$ is called an {\sl OIRI-ring\/} if each of its order ideals is a ring ideal. Generalizing earlier work of Basly and Triki, OIRI-rings are characterized as those $f$-rings $\Bbb R$ such that $\Bbb R/\Bbb I$ is contained in an $f$-ring with an identity element that is a strong order unit for some nil $l$-ideal $\Bbb I$ of $\Bbb R$. In particular, if $P(\Bbb R)$ denotes the set of nilpotent elements of the $f$-ring $\Bbb R$, then $\Bbb R$ is an OIRI-ring if and only if $\Bbb R/P(\Bbb R)$ is contained in an $f$-ring with an identity element that is a strong order unit. (English)
Keyword: $f$-ring
Keyword: OIRI-ring
Keyword: strong order unit
Keyword: $l$-ideal
Keyword: nilpotent
Keyword: annihilator
Keyword: order ideal
Keyword: ring ideal
Keyword: unitable
Keyword: archimedean
MSC: 06F25
MSC: 13C05
MSC: 16D15
MSC: 16W80
idZBL: Zbl 0744.06008
idMR: MR1159787
.
Date available: 2009-01-08T17:45:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116985
.
Reference: [BKW] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés.Lecture Notes in Mathematics 608, Springer-Verlag, New York, 1977. Zbl 0384.06022, MR 0552653
Reference: [BT] Basly M., Triki A.: $F$-algebras in which order ideals are ring ideals.Proc. Konin. Neder. Akad. Wet. 91 (1988), 231-234. Zbl 0662.46006, MR 0964828
Reference: [FH] Feldman D., Henriksen M.: $f$-rings, subdirect products of totally ordered rings, and the prime ideal theorem.ibid., 91 (1988), 121-126. Zbl 0656.06017, MR 0952510
Reference: [HI] Henriksen M., Isbell J.: Lattice ordered rings and function rings.Pacific J. Math. 12 (1962), 533-565. Zbl 0111.04302, MR 0153709
Reference: [J] Jech T.: The Axiom of Choice.North Holland Publ. Co., Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [LZ] Luxemburg W., Zaanen A.: Riesz Spaces.ibid., 1971. Zbl 0231.46014
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_1.pdf 184.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo