Title:
|
Measure of noncompactness of subsets of Lebesgue spaces (English) |
Author:
|
Otáhal, Antonín |
Language:
|
English |
Journal:
|
Časopis pro pěstování matematiky |
ISSN:
|
0528-2195 |
Volume:
|
103 |
Issue:
|
1 |
Year:
|
1978 |
Pages:
|
67-72 |
. |
Category:
|
math |
. |
MSC:
|
46E30 |
idZBL:
|
Zbl 0386.46026 |
idMR:
|
MR0473808 |
DOI:
|
10.21136/CPM.1978.117972 |
. |
Date available:
|
2009-09-23T08:52:40Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/117972 |
. |
Reference:
|
[1] N. Dunford J. T. Schwartz: Linear operators I.New York, London 1958. MR 0117523 |
Reference:
|
[2] L. S. Goldstein A. S. Markus: On the measure of noncompactness of bounded sets and linear operators.Issled. po algebre i mat. anal. Kismev, 1965, pp. 45-54 (in Russian). |
Reference:
|
[3] K. Kuratowski: Sur les espaces completes.Fund. Math. 15, 1930, 301 - 309. |
Reference:
|
[4] R. D. Nussbaum: A generalization of the Ascoli theorem and an application to functional differential equations.J. Math. Anal. Appl. 35, 1971, 600-610. Zbl 0215.19501, MR 0289898 |
Reference:
|
[5] J. Daneš: On densifying and related mappings and their application in nonlinear functional analysis.Theory of Nonlinear Operators. Proc. Summer Schocl, October 1972. Akademie Verlag, Berlin 1974, pp. 15-56. MR 0361946 |
Reference:
|
[6] K. Goebel: The measure of noncompactness in metric spaces and its applications in fixed point theory.Dissertation. Lublin 1970 (in Polish). |
Reference:
|
[7] M. A. Krasnoselskij, P. P. Zabrejko: Geometrical Methods of Nonlinear Analysis.Nauka, Moscow 1975 (in Russian). |
Reference:
|
[8] B. N. Sadovskij: On the measure of noncompactness and densifying operators.Problemy Mat. Anal. Slož. Sistemy 2, 1968, Voronezh, 89-119 (in Russian). |
Reference:
|
[9] B. N. Sadovskij: Limit compact and densifying operators.Uspechi Mat. Nauk 27, no 1, 1972, 81 - 146 (in Russian). MR 0428132 |
. |