Previous |  Up |  Next

Article

Title: Measure of noncompactness of subsets of Lebesgue spaces (English)
Author: Otáhal, Antonín
Language: English
Journal: Časopis pro pěstování matematiky
ISSN: 0528-2195
Volume: 103
Issue: 1
Year: 1978
Pages: 67-72
.
Category: math
.
MSC: 46E30
idZBL: Zbl 0386.46026
idMR: MR0473808
DOI: 10.21136/CPM.1978.117972
.
Date available: 2009-09-23T08:52:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/117972
.
Reference: [1] N. Dunford J. T. Schwartz: Linear operators I.New York, London 1958. MR 0117523
Reference: [2] L. S. Goldstein A. S. Markus: On the measure of noncompactness of bounded sets and linear operators.Issled. po algebre i mat. anal. Kismev, 1965, pp. 45-54 (in Russian).
Reference: [3] K. Kuratowski: Sur les espaces completes.Fund. Math. 15, 1930, 301 - 309.
Reference: [4] R. D. Nussbaum: A generalization of the Ascoli theorem and an application to functional differential equations.J. Math. Anal. Appl. 35, 1971, 600-610. Zbl 0215.19501, MR 0289898
Reference: [5] J. Daneš: On densifying and related mappings and their application in nonlinear functional analysis.Theory of Nonlinear Operators. Proc. Summer Schocl, October 1972. Akademie Verlag, Berlin 1974, pp. 15-56. MR 0361946
Reference: [6] K. Goebel: The measure of noncompactness in metric spaces and its applications in fixed point theory.Dissertation. Lublin 1970 (in Polish).
Reference: [7] M. A. Krasnoselskij, P. P. Zabrejko: Geometrical Methods of Nonlinear Analysis.Nauka, Moscow 1975 (in Russian).
Reference: [8] B. N. Sadovskij: On the measure of noncompactness and densifying operators.Problemy Mat. Anal. Slož. Sistemy 2, 1968, Voronezh, 89-119 (in Russian).
Reference: [9] B. N. Sadovskij: Limit compact and densifying operators.Uspechi Mat. Nauk 27, no 1, 1972, 81 - 146 (in Russian). MR 0428132
.

Files

Files Size Format View
CasPestMat_103-1978-1_9.pdf 481.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo