Previous |  Up |  Next

Article

References:
[1] V. I. Arnold: Geometric Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, N.Y., 1983. MR 0695786
[2] J. Carry S.-N. Chow, J. K. Hale: Abelian integrals and bifurcation theory. J. Diff. Eqn., 59(1985), 413-436. MR 0807855
[3] S.-N. Chow, J. K. Hale: Methods of Bifurcation Theory. Springer-Verlag, N.Y., 1982. MR 0660633 | Zbl 0487.47039
[4] S.-N. Chow, J. A. Sanders: On the number of critical points of the period. to appear. MR 0849664 | Zbl 0594.34028
[5] W. S. Loud: Periodic solution of x" + cx + g(x) = ε f(t). Mem. Amer. Math. Soc., No. 31 (1959), 1-57. MR 0107058
[6] C. Obi: Analytical theory of nonlinear oscillation, VII, The periods of the periodic solutions of the equation x" + g(x) = 0. J. Math. Anal. Appl. 55 (1976), 295-301. MR 0460796
[7] Z. Opial: Sur les periodes des solutions de Pequation differentielle x" + g(x) - 0. Ann. Pol. Math. 10 (1961), 49-72. MR 0121544
[8] R. Schaaf: Global behavior of solution branches for some Neumann problems depending on one or several parameters. to appear. MR 0727393
[9] D. Wang: On the existence of 2π-periodic solutions of differential equation x" + g(x) = p(t). Chin. Ann. Math., 5A(1) (1984), 61-72. MR 0743783
Partner of
EuDML logo