| Title:
|
On the monotonicity of the period function of some second order equations (English) |
| Author:
|
Chow, Shui-Nee |
| Author:
|
Wang, Duo |
| Language:
|
English |
| Journal:
|
Časopis pro pěstování matematiky |
| ISSN:
|
0528-2195 |
| Volume:
|
111 |
| Issue:
|
1 |
| Year:
|
1986 |
| Pages:
|
14-25 |
| . |
| Category:
|
math |
| . |
| MSC:
|
34C25 |
| idZBL:
|
Zbl 0603.34034 |
| idMR:
|
MR833153 |
| DOI:
|
10.21136/CPM.1986.118260 |
| . |
| Date available:
|
2009-09-23T09:35:05Z |
| Last updated:
|
2020-07-29 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118260 |
| . |
| Reference:
|
[1] V. I. Arnold: Geometric Methods in the Theory of Ordinary Differential Equations.Springer-Verlag, N.Y., 1983. MR 0695786 |
| Reference:
|
[2] J. Carry S.-N. Chow, J. K. Hale: Abelian integrals and bifurcation theory.J. Diff. Eqn., 59(1985), 413-436. MR 0807855 |
| Reference:
|
[3] S.-N. Chow, J. K. Hale: Methods of Bifurcation Theory.Springer-Verlag, N.Y., 1982. Zbl 0487.47039, MR 0660633 |
| Reference:
|
[4] S.-N. Chow, J. A. Sanders: On the number of critical points of the period.to appear. Zbl 0594.34028, MR 0849664 |
| Reference:
|
[5] W. S. Loud: Periodic solution of x" + cx + g(x) = ε f(t).Mem. Amer. Math. Soc., No. 31 (1959), 1-57. MR 0107058 |
| Reference:
|
[6] C. Obi: Analytical theory of nonlinear oscillation, VII, The periods of the periodic solutions of the equation x" + g(x) = 0.J. Math. Anal. Appl. 55 (1976), 295-301. MR 0460796 |
| Reference:
|
[7] Z. Opial: Sur les periodes des solutions de Pequation differentielle x" + g(x) - 0.Ann. Pol. Math. 10 (1961), 49-72. MR 0121544 |
| Reference:
|
[8] R. Schaaf: Global behavior of solution branches for some Neumann problems depending on one or several parameters.to appear. MR 0727393 |
| Reference:
|
[9] D. Wang: On the existence of 2π-periodic solutions of differential equation x" + g(x) = p(t).Chin. Ann. Math., 5A(1) (1984), 61-72. MR 0743783 |
| . |