Previous |  Up |  Next

Article

Title: Biequivalence vector spaces in the alternative set theory (English)
Author: Šmíd, Miroslav
Author: Zlatoš, Pavol
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 517-544
.
Category: math
.
Summary: As a counterpart to classical topological vector spaces in the alternative set theory, biequivalence vector spaces (over the field $Q$ of all rational numbers) are introduced and their basic properties are listed. A methodological consequence opening a new view towards the relationship between the algebraic and topological dual is quoted. The existence of various types of valuations on a biequivalence vector space inducing its biequivalence is proved. Normability is characterized in terms of total convexity of the monad and/or of the galaxy of $0$. Finally, the existence of a rather strong type of basis for a fairly extensive area of biequivalence vector spaces, containing all the most important particular cases, is established. (English)
Keyword: alternative set theory
Keyword: biequivalence
Keyword: vector space
Keyword: monad
Keyword: galaxy
Keyword: symmetric Sd-closure
Keyword: dual
Keyword: valuation
Keyword: norm
Keyword: convex
Keyword: basis
MSC: 03E70
MSC: 03H05
MSC: 46A04
MSC: 46A06
MSC: 46A08
MSC: 46A09
MSC: 46A35
MSC: 46Q05
MSC: 46S20
idZBL: Zbl 0756.03027
idMR: MR1159799
.
Date available: 2009-01-08T17:46:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118431
.
Reference: [Dv 1977] Davis M.: Applied Nonstandard Analysis.Wiley Interscience, New York-London-Sydney. Zbl 0359.02060, MR 0505473
Reference: [Dy 1940] Day M.M.: The spaces $L^p$ with $0< p< 1$.Bull. Amer. Math. Soc. 46 816-823. MR 0002700
Reference: [En 1973] Enflo P.: A counterexample to the approximation problem in Banach spaces.Acta Math. 130 309-317. Zbl 0286.46021, MR 0402468
Reference: [G-Z 1985a] Guričan J., Zlatoš P.: Biequivalences and topology in the alternative set theory.Comment. Math. Univ. Carolinae 26 525-552. MR 0817825
Reference: [G-Z 1985b] Guričan J., Zlatoš P.: Archimedean and geodetical biequivalences.Comment. Math. Univ. Carolinae 26 675-698. MR 0831804
Reference: [H-Mr 1972] Henson C.W., Moore L.C.: The nonstandard theory of topological vector spaces.Trans. Amer. Math. Soc. 172 405-435. Zbl 0274.46013, MR 0308722
Reference: [H-Mr 1983a] Henson C.W., Moore L.C.: Nonstandard analysis and the theory of Banach spaces.in Hurd A.E. (ed.), ``Nonstandard Analysis - Recent Developments,'' Lecture Notes in Mathematics 983, pp. 27-112, Springer, Berlin-Heidelberg-New York-Tokyo. Zbl 0511.46070, MR 0698954
Reference: [H-Mr 1983b] Henson C.W., Moore L.C.: The Banach spaces $\ell_p(n)$ for large $p$ and $n$.Manuscripta Math. 44 1-33. MR 0709841
Reference: [K-Z 1988] Kalina M., Zlatoš P.: Arithmetic of cuts and cuts of classes.Comment. Math. Univ. Carolinae 29 435-456. MR 0972828
Reference: [M 1979] Mlček J.: Valuations of structures.Comment. Math. Univ. Carolinae 20 525-552. MR 0555183
Reference: [Rd 1982] Radyno Ya.V.: Linear Equations and Bornology (in Russian).Izdatelstvo Belgosuniversiteta, Minsk. MR 0685429
Reference: [Rm 1980] Rampas Z.: Theory of matrices in the description of structures (in Czech).Master Thesis, Charles University, Prague.
Reference: [Rb-Rb 1964] Robertson A.P., Robertson W.J.: Topological Vector Spaces.Cambridge Univ. Press, Cambridge. Zbl 0423.46001, MR 0162118
Reference: [Sn 1970] Singer I.: Bases in Banach Spaces I.Springer, Berlin-Heidelberg-New York. Zbl 0198.16601, MR 0298399
Reference: [S-V 1980] Sochor A., Vopěnka P.: Revealments.Comment. Math. Univ. Carolinae 21 97-118. MR 0566243
Reference: [V 1979] Vopěnka P.: Mathematics in the Alternative Set Theory.Teubner, Leipzig. MR 0581368
Reference: [We 1976] Welsh D.J.A.: Matroid Theory.Academic Press, London-New York-San Francisco. Zbl 0343.05002, MR 0427112
Reference: [Wi 1978] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill Int. Comp., New York-St.Louis. Zbl 0395.46001, MR 0518316
Reference: [Z 1989] Zlatoš P.: Topological shapes.in Mlček J. et al. (eds.), ``Proc. of the $1^{st}$ Symposium on Mathematics in the Alternative Set Theory,'' pp. 95-120, Association of Slovak Mathematicians and Physicists, Bratislava.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_13.pdf 332.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo