Previous |  Up |  Next

Article

Title: $\Cal P$-approximable compact spaces (English)
Author: Tkačenko, Michael G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 583-595
.
Category: math
.
Summary: For every topological property $\Cal P$, we define the class of $\Cal P$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the ``section'' $X(x,\gamma )= \bigcap \{F\in \gamma :x\in F\}$ has the property $\Cal P$ for each $x\in X$. It is shown that every $\Cal P$-approximable compact space has $\Cal P$, if $\Cal P$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}<2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace. (English)
Keyword: $\Cal P$-approximable space
Keyword: Lindelöf $\Sigma $-space
Keyword: compact
Keyword: metrizable
Keyword: $C$-closed
Keyword: sequential
Keyword: linearly ordered
MSC: 54A20
MSC: 54A25
MSC: 54A35
MSC: 54B05
MSC: 54B10
MSC: 54D20
MSC: 54D30
MSC: 54D55
MSC: 54E35
MSC: 54F05
idZBL: Zbl 0766.54019
idMR: MR1159804
.
Date available: 2009-01-08T17:47:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118436
.
Reference: [1] Alexandroff P.S., Urysohn P.S.: Memoir on compact topological spaces (in Russian).Moscow, Nauka, 1971. MR 0370492
Reference: [2] Arhangel'skii A.V.: Bicompact sets and the topology of spaces.Trans. Mosc. Math. Soc. 13 (1965), 1-62. MR 0195046
Reference: [3] Arhangel'skii A.V.: On one class of spaces that contains all metrizable and all locally compact spaces (in Russian).Matem. Sb. 67 (1965), 55-88. MR 0190889
Reference: [4] Arhangel'skii A.V.: On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences.Soviet. Math. Dokl. 12 (1971), 1253-1257.
Reference: [5] Arhangel'skii A.V.: On compact spaces which are unions of certain collections of subspaces of special type.Comment. Math. Univ. Carolinae 17 (1976), 737-753. MR 0445453
Reference: [6] Arhangel'skii A.V.: On topologies weakly connected with orderings (in Russian).Dokl AN SSSR 238 (1978), 773-776. MR 0515022
Reference: [7] Arhangel'skii A.V.: On spaces of continuous functions with the pointwise convergence topology (in Russian).Dokl. AN SSSR 240 (1978), 505-508. MR 0500817
Reference: [8] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants (in Russian).Uspechi Mat. Nauk 33 (1978), 29-84. MR 0526012
Reference: [9] Arhangel'skii A.V.: On invariants of type character and weight (in Russian).Trudy Mosc. Mat. Obsch. 38 (1979), 3-27. MR 0544935
Reference: [10] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\Bbb N$ covered by nowhere dense sets.Fund. Math. 110 (1980), 11-24. MR 0600576
Reference: [11] Engelking R.: General Topology.Warszawa, PWN, 1977. Zbl 0684.54001, MR 0500780
Reference: [12] Franklin S.P.: Spaces in which sequences suffice, II.Fund. Math. 57 (1967), 51-56. Zbl 0168.43502, MR 0222832
Reference: [13] Gul'ko S.P.: On the structure of spaces of continuous functions and their hereditary paracompactness (in Russian).Uspechi Mat. Nauk 34 (1979), 33-40. MR 0562814
Reference: [14] Ismail M.: Products of $C$-closed spaces.Houston J. Math. 10 (1984), 195-199. MR 0744903
Reference: [15] Ismail M., Nyikos P.: On spaces in which countably compact sets are closed, and hereditary properties.Topology Appl. 11 (1980), 281-292. Zbl 0434.54018, MR 0585273
Reference: [16] Juhász I.: Cardinal functions in topology.Math. Centre Tracts, 34, Amsterdam, 1971. MR 0340021
Reference: [17] Leiderman A.G.: On dense metrizable subspaces of Corson compact spaces (in Russian).Matem. Zametki 38 (1985), 440-449. MR 0811578
Reference: [18] Malyhin V.I.: On the tightness and the Souslin number of ${exp} X$ and of a product of spaces.Soviet Math. Dokl. 13 (1972), 496-499.
Reference: [19] Malyhin V.I., Šapirovskii B.E.: Martin's axiom and properties of topological spaces (in Russian).Dokl. AN SSSR 213 (1973), 532-535. MR 0343241
Reference: [20] Nagami K.: $\Sigma $-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963
Reference: [21] Noble N.: Products with closed projections, II.Trans. Amer. Math. Soc. 160 (1971), 169-183. Zbl 0233.54004, MR 0283749
Reference: [22] Šapirovskii B.E.: On mappings onto Tychonoff cubes (in Russian).Uspechi Mat. Nauk 35 (1980), 122-130. MR 0580628
Reference: [23] Simon P.: Covering of a space by nowhere dense sets.Comment. Math. Univ. Carolinae 18 (1977), 755-761. Zbl 0373.54009, MR 0464133
Reference: [24] Sokolov G.A.: On some classes of compact spaces lying in $\Sigma $-products.Comment. Math. Univ. Carolinae 25 (1984), 219-231. Zbl 0577.54014, MR 0768809
Reference: [25] Štěpánek P., Vopěnka P.: Decomposition of metric spaces into nowhere dense sets.Comment. Math. Univ. Carolinae 8 (1967), 387-404, 567-568. MR 0225657
Reference: [26] Talagrand M.: Sur les espaces Banach faiblement $K$-analytiques.Comp. Rend. Acad. Sci., Ser. A 285 (1977), 119-122. MR 0440342
Reference: [27] Tkačenko M.G.: Some addition theorems in the class of compact spaces (in Russian).Sibir. Mat. J. 24 (1983), 135-143. MR 0731050
Reference: [28] Tkačenko M.G.: On compactness of countably compact spaces having additional structure.Trans. Mosc. Math. Soc. 1984, Issue 2, 149-167.
Reference: [29] Tkačenko M.G.: The notion of o-tightness and $C$-embedded subspaces of products.Topology Appl. 15 (1983), 93-98. MR 0676970
Reference: [30] Todorčević S.: Cardinal functions on linearly ordered topological spaces, - Topology and order structures, Part I (Lubbock, Tex., 1980).p. 177-179, Math. Centre Tracts, 142, Math. Centrum, Amsterdam, 1981 (). MR 0630552
Reference: [31] Todorčević S.: Stationary sets and continuums.Publ. Inst. Math., Nouvelle sér. 27 (1981), 249-262. MR 0657114
Reference: [32] White H.E.: First-countable spaces that have special pseudobases.Canad. Math. Bull. 21 (1978), 103-112. MR 0482615
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_18.pdf 261.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo