Previous |  Up |  Next

Article

Title: Existence of solutions for integrodifferential inclusions in Banach spaces (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 687-696
.
Category: math
.
Summary: In this paper we examine nonlinear integrodifferential inclusions defined in a se\-pa\-rable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones. (English)
Keyword: sublinear measure of noncompactness
Keyword: orientor
Keyword: field
Keyword: selector
Keyword: upper semicontinuity
Keyword: lower semicontinuity
Keyword: graph measurability
Keyword: weak measurability
MSC: 34A60
MSC: 34G05
MSC: 34G20
MSC: 34K30
MSC: 45G10
MSC: 45J05
MSC: 45N05
MSC: 49J24
idZBL: Zbl 0824.45017
idMR: MR1159815
.
Date available: 2009-01-08T17:48:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118448
.
Reference: [1] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. Zbl 0441.47056, MR 0591679
Reference: [2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-86. Zbl 0677.54013, MR 0947921
Reference: [3] Davy J.L.: Properties of the solution set of a generalized differential equation.Bulletin of the Australian Math. Soc. 6 (1974), 379-398. MR 0303023
Reference: [4] Kandilakis D., Papageorgiou N.S.: On the properties of the Aumann integral with applications to differential inclusions and control systems.Czech. Math. Journ. 39 (1989), 1-15. Zbl 0677.28005, MR 0983479
Reference: [5] Kisielewicz M.: Multivalued differential equations in separable Banach spaces.Journ. of Optim. Theory Appl. 37 (1982), 231-249. Zbl 0458.34008, MR 0663523
Reference: [6] Klein E., Thompson A.: Theory of Correspondence.Wiley, New York, 1984. MR 0752692
Reference: [7] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlin. Anal.-TMA 4 (1980), 985-999. MR 0586861
Reference: [8] Mukshinov A.: On differential inclusions in Banach spaces.Soviet Math. Doklady 15 (1976), 1122-1125.
Reference: [9] Pachpatte B.: A note on Gronwall-Bellman inequality.J. Math. Anal. Appl. 44 (1973), 758-762. Zbl 0274.45011, MR 0335721
Reference: [10] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
Reference: [11] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [12] Papageorgiou N.S.: Measurable multifunctions and their applications to convex integral functionals.Intern. J. Math. and Math. Sci. 12 (1989), 175-192. Zbl 0659.28008, MR 0973087
Reference: [13] Papageorgiou N.S.: Decomposable sets in the Lebesgue-Bochner spaces.Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. Zbl 0679.46032, MR 0942305
Reference: [14] Papageorgiou N.S.: Deterministic and random Volterra integral inclusions.Publ. de l'Institut Math. 46 (1989), 119-131. Zbl 0699.45003, MR 1060066
Reference: [15] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces.Comment. Math. Univ. Sancti Pauli 36 (1987), 21-39. Zbl 0641.47052, MR 0892378
Reference: [16] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem.J. Funct. Anal. 17 (1974), 112-129. MR 0374364
Reference: [17] Tarafdar E., Vyborny R.: Fixed point theorems for condensing multivalued mappings on a locally convex topological spaces.Bull. Austr. Math. Soc. 12 (1975), 161-170. MR 0383167
Reference: [18] Wagner D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_11.pdf 230.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo