Title:
|
Existence of solutions for integrodifferential inclusions in Banach spaces (English) |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
4 |
Year:
|
1991 |
Pages:
|
687-696 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we examine nonlinear integrodifferential inclusions defined in a se\-pa\-rable Banach space. Using a compactness type hypothesis involving the ball measure of noncompactness, we establish two existence results. One involving convex-valued orientor fields and the other nonconvex valued ones. (English) |
Keyword:
|
sublinear measure of noncompactness |
Keyword:
|
orientor |
Keyword:
|
field |
Keyword:
|
selector |
Keyword:
|
upper semicontinuity |
Keyword:
|
lower semicontinuity |
Keyword:
|
graph measurability |
Keyword:
|
weak measurability |
MSC:
|
34A60 |
MSC:
|
34G05 |
MSC:
|
34G20 |
MSC:
|
34K30 |
MSC:
|
45G10 |
MSC:
|
45J05 |
MSC:
|
45N05 |
MSC:
|
49J24 |
idZBL:
|
Zbl 0824.45017 |
idMR:
|
MR1159815 |
. |
Date available:
|
2009-01-08T17:48:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118448 |
. |
Reference:
|
[1] Banas J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. Zbl 0441.47056, MR 0591679 |
Reference:
|
[2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-86. Zbl 0677.54013, MR 0947921 |
Reference:
|
[3] Davy J.L.: Properties of the solution set of a generalized differential equation.Bulletin of the Australian Math. Soc. 6 (1974), 379-398. MR 0303023 |
Reference:
|
[4] Kandilakis D., Papageorgiou N.S.: On the properties of the Aumann integral with applications to differential inclusions and control systems.Czech. Math. Journ. 39 (1989), 1-15. Zbl 0677.28005, MR 0983479 |
Reference:
|
[5] Kisielewicz M.: Multivalued differential equations in separable Banach spaces.Journ. of Optim. Theory Appl. 37 (1982), 231-249. Zbl 0458.34008, MR 0663523 |
Reference:
|
[6] Klein E., Thompson A.: Theory of Correspondence.Wiley, New York, 1984. MR 0752692 |
Reference:
|
[7] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonlin. Anal.-TMA 4 (1980), 985-999. MR 0586861 |
Reference:
|
[8] Mukshinov A.: On differential inclusions in Banach spaces.Soviet Math. Doklady 15 (1976), 1122-1125. |
Reference:
|
[9] Pachpatte B.: A note on Gronwall-Bellman inequality.J. Math. Anal. Appl. 44 (1973), 758-762. Zbl 0274.45011, MR 0335721 |
Reference:
|
[10] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal. 17 (1985), 185-206. MR 0808276 |
Reference:
|
[11] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595 |
Reference:
|
[12] Papageorgiou N.S.: Measurable multifunctions and their applications to convex integral functionals.Intern. J. Math. and Math. Sci. 12 (1989), 175-192. Zbl 0659.28008, MR 0973087 |
Reference:
|
[13] Papageorgiou N.S.: Decomposable sets in the Lebesgue-Bochner spaces.Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. Zbl 0679.46032, MR 0942305 |
Reference:
|
[14] Papageorgiou N.S.: Deterministic and random Volterra integral inclusions.Publ. de l'Institut Math. 46 (1989), 119-131. Zbl 0699.45003, MR 1060066 |
Reference:
|
[15] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces.Comment. Math. Univ. Sancti Pauli 36 (1987), 21-39. Zbl 0641.47052, MR 0892378 |
Reference:
|
[16] Saint-Beuve M.-F.: On the extension of von Neumann-Aumann's theorem.J. Funct. Anal. 17 (1974), 112-129. MR 0374364 |
Reference:
|
[17] Tarafdar E., Vyborny R.: Fixed point theorems for condensing multivalued mappings on a locally convex topological spaces.Bull. Austr. Math. Soc. 12 (1975), 161-170. MR 0383167 |
Reference:
|
[18] Wagner D.: Survey of measurable selection theorems.SIAM J. Control and Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391 |
. |