Previous |  Up |  Next

Article

Title: Convergence of approximating fixed points sets for multivalued nonexpansive mappings (English)
Author: Pietramala, Paolamaria
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 697-701
.
Category: math
.
Summary: Let $K$ be a closed convex subset of a Hilbert space $H$ and $T:K \multimap K$ a nonexpansive multivalued map with a unique fixed point $z$ such that $\{z\}=T(z)$. It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to $z$. (English)
Keyword: multivalued nonexpansive map
Keyword: fixed points set
Keyword: Mosco convergence
MSC: 47H09
MSC: 47H10
idZBL: Zbl 0756.47039
idMR: MR1159816
.
Date available: 2009-01-08T17:48:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118449
.
Reference: [1] Browder F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces.Arch. Rational. Mech. Anal. 24 (1967), 82-90. Zbl 0148.13601, MR 0206765
Reference: [2] Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces.J. Math. Anal. Appl. 75 (1980), 287-292. Zbl 0437.47047, MR 0576291
Reference: [3] Singh S.P., Watson B.: On approximating fixed points.Proc. Symp. Pure Math. 45 (part 2) (1986), 393-395. Zbl 0597.47035, MR 0843624
Reference: [4] Reich S.: Fixed points of contractive functions.Boll. UMI 5 (1972), 26-42. Zbl 0249.54026, MR 0309095
Reference: [5] Ćirić L.B.: Fixed points for generalized multivalued contractions.Mat. Vesnik, N. Ser. 9 {(24)} (1972), 265-272. MR 0341460
Reference: [6] Iséki K.: Multivalued contraction mappings in complete metric spaces.Math. Sem. Notes 2 (1974), 45-49. MR 0413070
Reference: [7] Corley H.W.: Some hybrid fixed point theorems related to optimization.J. Math. Anal. Appl. 120 (1986), 528-532. Zbl 0631.47041, MR 0864769
Reference: [8] LamiDozo E.: Multivalued nonexpansive mappings and Opial's condition.Proc. Amer. Math. Soc. 38 (1973), 286-292. MR 0310718
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_12.pdf 171.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo