Previous |  Up |  Next

Article

Title: Extremal solutions of a general marginal problem (English)
Author: Linhartová, Petra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 743-748
.
Category: math
.
Summary: The characterization of extremal points of the set of probability measures with given marginals is given in the general context of a marginal system. The sets of marginal uniqueness are studied and an example is added to illustrate the theory. (English)
Keyword: marginal problem
Keyword: marginal system
Keyword: simplicial measure
Keyword: set of marginal uniqueness
MSC: 28A33
MSC: 46A55
MSC: 46N30
MSC: 52A05
MSC: 60B05
idZBL: Zbl 0751.60006
idMR: MR1159821
.
Date available: 2009-01-08T17:48:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118454
.
Reference: [1] Arnol'd V.I.: On functions of three variables (in Russian).Dokl. Akad. Nauk USSR 114 (1957), 679-681. MR 0111808
Reference: [2] Beneš V., Štěpán J.: The support of extremal probability measures with given marginals.In: Math. Stat. and Prob. Theory A (1987), 33-41. MR 0922685
Reference: [3] Beneš V., Štěpán J.: Extremal Solutions in the Marginal Problem.In: Advances in Probability Distributions with Given Marginals, Kluwer Academic Publishers, Dodrecht, 1991, 189-207. MR 1215952
Reference: [4] Douglas R.G.: On extremal measures and subspace density.Michigan Math. J. 11 (1964), 243-246. Zbl 0121.33102, MR 0185427
Reference: [5] Dunford N., Schwartz J.T.: Linear Operators.Interscience Publishers Inc., New York, 1958. Zbl 0635.47003, MR 0117523
Reference: [6] Ersov M.: The Choquet theorem and stochastic equations.Analysis Math. 1 (1975), 259-271. MR 0401995
Reference: [7] Hoffmann-Jørgensen J.: The general marginal problem.Lecture Notes in Math. 1242: Functional Analysis II, Springer-Verlag, 1987, 77-367. MR 0906272
Reference: [8] Kolmogorov A.N.: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition (in Russian).Dokl. Akad. Nauk USSR 114 (1957), 953-956. MR 0111809
Reference: [9] Letac G.: Representation des mesures de probabilité sur le produit de deux espaces denombrables, de marges données..Ann. Inst. Fourier 16 (1966), 497-507. Zbl 0141.14801, MR 0200957
Reference: [10] Štěpán J.: Simplicial Measures.In: Contributions to Statistics (J. Hájek Memorial Volume), Praha, 1977, 239-251. MR 0561272
Reference: [11] Štěpán J.: Probability Measures with Given Expectations.Proc. of the 2nd Prague Symp. on Asympt. Statistics, North Holland, 1979, 315-320. MR 0571198
Reference: [12] Štěpán J.: Weak Convergence in Probability Theory (in Czech).Charles University, Prague, 1988, Dr.\thinspace Sc. dissertation.
Reference: [13] Štěpán J.: Simplicial Measures and Sets of Uniqueness in Marginal Problem.Statistics and Decisions, 1991, to appear. MR 1257863
Reference: [14] Weizsäcker H. von, Winkler G.: Integral representation in the set of solutions of a generalized moment problem.Math. Ann. 246 (1979), 23-32. MR 0554129
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_17.pdf 195.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo