Previous |  Up |  Next

Article

Title: Making factorizations compositive (English)
Author: Börger, Reinhard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 749-759
.
Category: math
.
Summary: The main aim of this paper is to obtain compositive cone factorizations from non-compositive ones by itereration. This is possible if and only if certain colimits of (possibly large) chains exist. In particular, we show that (strong-epi, mono) factorizations of cones exist if and only if joint coequalizers and colimits of chains of regular epimorphisms exist. (English)
Keyword: (locally) orthogonal $\Cal E$-factorization
Keyword: (local) factorization class
Keyword: colimit of a chain
Keyword: cointersection
Keyword: regular epimorphism
Keyword: joint coequalizer
Keyword: (familially) strong epimorphism
Keyword: decomposition number
MSC: 03E10
MSC: 18A20
MSC: 18A30
MSC: 18A32
idZBL: Zbl 0760.18001
idMR: MR1159822
.
Date available: 2009-01-08T17:48:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118455
.
Reference: [1] BörgerR.: Kategorielle Beschreibungen von Zusammenhangsbegriffen.Doctoral Dissertation, Fernuniversität Hagen, 1981. Zbl 0478.18003
Reference: [2] BörgerR., Tholen W.: Concordant-dissonant and monotone-light.Proceedings of the International Conference on Categorical Topology, Toledo (Ohio), 1983 Sigma Series in Pure Mathematics 5 (1984), 90-107. Zbl 0549.18003, MR 0785013
Reference: [3] BörgerR., Tholen W.: Total categories and solid functors,.Can. J. Math. 42 (1990), 213-229. Zbl 0742.18001, MR 1051726
Reference: [4] BörgerR., Tholen W.: Strong, regular, and dense generators.Cahiers Topologie Géom. Différentielle Catégoriques, to appear. Zbl 0758.18001
Reference: [5] Ehrbar H., Wyler O.: Images in categories as reflections,.Cahiers Topologie Géom. Différentielle Catégoriques 28 (1987), 143-158. Zbl 0632.18001, MR 0913969
Reference: [6] Freyd P., Kelly G.M.: Categories of continuous functors I.J. Pure Appl. Algebra 2 (1972), 169-191. Zbl 0257.18005, MR 0322004
Reference: [7] Gabriel P., Ulmer F.: Lokal präsentierbare Kategorien.Lecture Notes in Mathematics 221, Springer, Berlin, 1971. Zbl 0225.18004, MR 0327863
Reference: [8] Herrlich H., Salicrup G., Vazquez R.: Dispersed factorization structures.Can. J. Math. 31 (1979), 1059-1071. Zbl 0435.18003, MR 0546958
Reference: [9] Herrlich H., Salicrup G., Vazquez R.: Light factorization structures.Quaest. Math. 3 (1979), 181-213. Zbl 0407.54006, MR 0533531
Reference: [10] Isbell J.R.: Epimorphisms and dominions.Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin (1966), 232-246. Zbl 0287.08007, MR 0209202
Reference: [11] Isbell J.R.: Structure of categories.Bull. Amer. Math. Soc. 72 (1966), 619-655. Zbl 0142.25401, MR 0206071
Reference: [12] Kelly G.M.: Monomorphisms, epimorphisms, and pullbacks.J. Austral. Math. Soc. A9 (1969), 124-142. MR 0240161
Reference: [13] Kunen K.: Set theory.Studies in Logic and the Foundation of Mathematics 102, North-Holland, Amsterdam, 1980. Zbl 0960.03033, MR 0597342
Reference: [14] Melton A., Strecker G.E.: On the structure of factorization structures.Lecture Notes in Mathematics 962, Springer, Berlin (1982), 197-208. Zbl 0502.18001, MR 0682957
Reference: [15] MacDonald J., Stone A.: The tower and regular decomposition.Cahiers Topologie Géom. Différentielle Categoriques 23 (1982), 197-213. Zbl 0491.18002, MR 0667399
Reference: [16] MacDonald J., Tholen W.: Decomposition of morphisms into infinetely many factors.Lecture Notes in Mathematics 962, Springer, Berlin (1982), 175-189. MR 0682955
Reference: [17] Preuß G.: $\Cal E$-zusammenhängende Räume.Manuscripta Math. 3 (1970), 331-342. MR 0282323
Reference: [18] Street R.: The familial approach to total completeness and toposes.Trans. Amer. Math. Soc. 284 (1984), 355-369. MR 0742429
Reference: [19] Street R., Walters R.: Yoneda structures on 2-categories.J. Algebra 50 (1978), 350-379. Zbl 0401.18004, MR 0463261
Reference: [20] Tholen W.: Bildzerlegungen und algebraische Kategorien.Doctoral Dissertation, Universität Münster, 1974.
Reference: [21] Tholen W.: Factorizations, localizations and the orthogonal subcategory problem.Math. Nachr. 114 (1983), 63-85. Zbl 0553.18003, MR 0745048
Reference: [22] Tholen W.: MacNeille completions of categories with local properties.Comment. Math. Univ. St. Pauli 28 (1979), 179-202. MR 0578672
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_18.pdf 234.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo