| Title: | Logarithmic capacity is not subadditive – a fine topology approach (English) | 
| Author: | Pyrih, Pavel | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 33 | 
| Issue: | 1 | 
| Year: | 1992 | 
| Pages: | 67-72 | 
| . | 
| Category: | math | 
| . | 
| Summary: | In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory. (English) | 
| Keyword: | logarithmic capacity | 
| Keyword: | fine topology | 
| MSC: | 30C85 | 
| MSC: | 31A15 | 
| MSC: | 31C40 | 
| MSC: | 60J45 | 
| idZBL: | Zbl 0764.31006 | 
| idMR: | MR1173748 | 
| . | 
| Date available: | 2009-01-08T17:53:38Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118472 | 
| . | 
| Reference: | [1] Brelot M.: Lectures on Potential Theory.Tata Institute of Fundamental Research Bombay (1966). MR 0118980 | 
| Reference: | [2] Brelot M.: On Topologies and Boundaries in Potential Theory.Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin (1971). Zbl 0222.31014, MR 0281940 | 
| Reference: | [3] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart.Springer, New-York (1984). Zbl 0549.31001, MR 0731258 | 
| Reference: | [4] Fuglede B.: Fine Topology and Finely Holomorphic Functions.Proc. 18th Scand. Congr. Math. Aarhus (1980), 22-38. MR 0633349 | 
| Reference: | [5] Fuglede B.: Sur les fonctions finement holomorphes.Ann. Inst. Fourier (Grenoble) 31.4 (1981), 57-88. Zbl 0445.30040, MR 0644343 | 
| Reference: | [6] Hayman W.K.: Subharmonic functions, Vol.2.London Math. Society Monographs 20, Academic Press London (1989). MR 1049148 | 
| Reference: | [7] Helms L.L.: Introduction to Potential Theory.Wiley Interscience Pure and Applied Mathematics 22, New-York (1969). Zbl 0188.17203, MR 0261018 | 
| Reference: | [8] Landkof N.S.: Foundations of Modern Potential Theory.Russian Moscow (1966). | 
| Reference: | [9] Landkof N.S.: Foundations of Modern Potential Theory.(translation from [8]), Springer-Verlag, Berlin (1972). Zbl 0253.31001, MR 0350027 | 
| Reference: | [10] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory.Lecture Notes in Mathematics No. 1189, Springer-Verlag, Berlin (1986). MR 0861411 | 
| . |