Previous |  Up |  Next

Article

Title: Logarithmic capacity is not subadditive – a fine topology approach (English)
Author: Pyrih, Pavel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 67-72
.
Category: math
.
Summary: In Landkof's monograph [8, p. 213] it is asserted that logarithmic capacity is strongly subadditive, and therefore that it is a Choquet capacity. An example demonstrating that logarithmic capacity is not even subadditive can be found e.g\. in [6, Example 7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine topology in potential theory. (English)
Keyword: logarithmic capacity
Keyword: fine topology
MSC: 30C85
MSC: 31A15
MSC: 31C40
MSC: 60J45
idZBL: Zbl 0764.31006
idMR: MR1173748
.
Date available: 2009-01-08T17:53:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118472
.
Reference: [1] Brelot M.: Lectures on Potential Theory.Tata Institute of Fundamental Research Bombay (1966). MR 0118980
Reference: [2] Brelot M.: On Topologies and Boundaries in Potential Theory.Lecture Notes in Mathematics No. 175, Springer-Verlag, Berlin (1971). Zbl 0222.31014, MR 0281940
Reference: [3] Doob J.L.: Classical Potential Theory and Its Probabilistic Counterpart.Springer, New-York (1984). Zbl 0549.31001, MR 0731258
Reference: [4] Fuglede B.: Fine Topology and Finely Holomorphic Functions.Proc. 18th Scand. Congr. Math. Aarhus (1980), 22-38. MR 0633349
Reference: [5] Fuglede B.: Sur les fonctions finement holomorphes.Ann. Inst. Fourier (Grenoble) 31.4 (1981), 57-88. Zbl 0445.30040, MR 0644343
Reference: [6] Hayman W.K.: Subharmonic functions, Vol.2.London Math. Society Monographs 20, Academic Press London (1989). MR 1049148
Reference: [7] Helms L.L.: Introduction to Potential Theory.Wiley Interscience Pure and Applied Mathematics 22, New-York (1969). Zbl 0188.17203, MR 0261018
Reference: [8] Landkof N.S.: Foundations of Modern Potential Theory.Russian Moscow (1966).
Reference: [9] Landkof N.S.: Foundations of Modern Potential Theory.(translation from [8]), Springer-Verlag, Berlin (1972). Zbl 0253.31001, MR 0350027
Reference: [10] Lukeš J., Malý J., Zajíček L.: Fine Topology Methods in Real Analysis and Potential Theory.Lecture Notes in Mathematics No. 1189, Springer-Verlag, Berlin (1986). MR 0861411
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_9.pdf 183.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo