Previous |  Up |  Next

Article

Title: On superpositionally measurable semi-Carathéodory multifunctions (English)
Author: Zygmunt, Wojciech
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 1
Year: 1992
Pages: 73-77
.
Category: math
.
Summary: For multifunctions $F:\/T\times X\to 2^Y$, measurable in the first variable and semicontinuous in the second one, a relation is established between being product measurable and being superpositionally measurable. (English)
Keyword: multifunctions
Keyword: semi-Carathéodory multifunctions
Keyword: product measurable
Keyword: superpositionally measurable
MSC: 28B20
idZBL: Zbl 0756.28008
idMR: MR1173749
.
Date available: 2009-01-08T17:53:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118473
.
Reference: [1] Appel J.: The superposition operator in function spaces - a survey.Expo. Math. 6 (1988), 209-270. MR 0949784
Reference: [2] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310
Reference: [3] Himmelberg C.J.: Measurable relations.Fund. Math. 87 (1975), 53-72. Zbl 0296.28003, MR 0367142
Reference: [4] Kucia A.: On the existence of Carathéodory selectors.Bull. Pol. Acad., Math. 32 (1984), 233-241. Zbl 0562.28004, MR 0771908
Reference: [5] Lojasiewicz S.Jr.: Some theorems of Scorza-Dragoni type for multifunctions with application to the problem of existence of solutions for differential multivalued equations.Mathematical Control Theory, Banach Cent. Publ., vol. 14, PWN - Polish Scientific Publishers, Warsaw, 1985, 625-643. Zbl 0576.49024, MR 0851255
Reference: [6] Mordukhovich B.Š.: Some properties of multivalued mappings and differential inclusions with an application to problems of the existence of solutions for optimal controls (in Russian).Izvestiya Akad. Nauk BSSR 1981, VINITI No. 5268-80.
Reference: [7] Nowak A.: Random differential inclusions; measurable selection approach.Ann. Polon. Math. 49 (1989), 291-296. Zbl 0674.60062, MR 0997521
Reference: [8] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [9] Papageorgiou N.S.: On multivalued evolution equations and differential inclusions in Banach spaces.Comment. Math. Univ. St. Pauli 36 (1987), 21-39. Zbl 0641.47052, MR 0892378
Reference: [10] Sainte-Beuve M.F.: On the extension of von Neumann-Aumann's theorem.J. Funct. Anal. 17 (1974), 112-129. Zbl 0286.28005, MR 0374364
Reference: [11] Spakowski A.: On superpositionally measurable multifunctions.Acta Univ. Carol., Math. Phys., No. 2, 30 (1989), 149-151. Zbl 0705.28003, MR 1046461
Reference: [12] Tsalyuk V.Z.: On superpositionally measurable multifunctions (in Russian).Mat. Zametki 43 (1988), 98-102.
Reference: [13] Wagner D.H.: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [14] Zygmunt W.: The Scorza-Dragoni's type property and product measurability of a multifunction of two variables.Rend. Acad. Naz. Sci., XL. Mem. Mat. 12 (1988), 109-115. Zbl 0677.28004, MR 0985060
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-1_10.pdf 178.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo