Previous |  Up |  Next

Article

Title: Continuous actions of pseudocompact groups and axioms of topological group (English)
Author: Korovin, Alexander V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 2
Year: 1992
Pages: 335-343
.
Category: math
.
Summary: In this paper, we show that it is possible to extend the Ellis theorem, establishing the relations between axioms of a topological group on a new class $\mathcal N$ of spaces containing all countably compact spaces in the case of Abelian group structure. We extend statements of the Ellis theorem concerning separate and joint continuity of group inverse on the class of spaces $\mathcal N$ that gives some new examples and statements for the $C_p$-theory and theory of topologically homogeneous spaces. (English)
Keyword: $m$-topological group
Keyword: semitopological group
Keyword: paratopological group
Keyword: topological group
Keyword: topology of pointwise convergence
Keyword: Eberlein compact
Keyword: weak functional tightness
MSC: 22A05
MSC: 22B05
MSC: 54B15
MSC: 54C35
MSC: 54H11
idZBL: Zbl 0786.22002
idMR: MR1189665
.
Date available: 2009-01-08T17:56:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118502
.
Reference: [1] Arhangel'skiĭ A.V.: Topologicheskie prostranstva funktsyĭ (in Russian).Moscow, MSU, 1989.
Reference: [2] Arhangel'skiĭ A.V.: Functional tightness, $Q$-spaces and $\tau $-embeddings.Comment. Math. Univ. Carolinae 24 (1983), 105-120. MR 0703930
Reference: [3] Arhangel'skiĭ A.V., Tkačuk V.V.: Prostranstva funktsyĭ v topologii potochechnoĭ skhodimosti (in Russian).Moscow, MSU, 1985.
Reference: [4] Asanov M.O., Veličko N.V.: Kompaktnye množestva v $C_p$ (in Russian).Comment. Math. Univ. Carolinae 22 (1981), 255-266. MR 0620361
Reference: [5] Bourbaki N.: Topologie générale.Chapt. III, Groupes topologiques (Théorie élémentaire), Hermann, Paris, 1942. Zbl 1107.54001
Reference: [6] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (3) (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [7] Douglas L. Grant: The Wallace problem and continuity of the inverse in pseudocompact groups.preprint, 1987. MR 1142798
Reference: [8] Ellis R.: Locally compact transformation groups.Duke Math. Journ. 27 (2) (1957), 119-125. Zbl 0079.16602, MR 0088674
Reference: [9] Engelking R.: General Topology.Warszawa, PWN, 1977. Zbl 0684.54001, MR 0500780
Reference: [10] Ivanovskiĭ L.I.: Ob odnoĭ gipoteze P.S. Aleksandrova (in Russian).Dokl. Akad. Nauk SSSR 123 (3) (1959), 786-788.
Reference: [11] Korovin A.V.: Nepreryvnye deĭstvija psevdokompaktnych grupp i aksiomy topologicheskoĭ gruppy (in Russian).VINITI, N 3734-V 90 (1990).
Reference: [12] Korovin A.V.: Nepreryvnye deĭstvija abelevyh grupp i topologicheskie svoĭstva v $C_p$-teorii gruppy (in Russian).Ph.D. Thesis (Dissertation), Moscow, MSU, 1990.
Reference: [13] Kuz'minov V.I.: O gipoteze P.S. Aleksandrova v teorii topologicheskich grupp (in Russian).Dokl. Akad. Nauk SSSR 125 (3) (1959), 727-729.
Reference: [14] Namioka I.: Separate continuity and joint continuity.Pacific J. Math. 51 (2) 1974 (), 513-536. Zbl 0294.54010, MR 0370466
Reference: [15] Preiss D., Simon P.: A weakly pseudocompact subspaces of a Banach space is weakly compact.Comment. Math. Univ. Carolinae 15 (1974), 603-610. MR 0374875
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-2_15.pdf 206.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo