Previous |  Up |  Next

Article

Title: On hereditary and product-stable quotient maps (English)
Author: Schwarz, Friedhelm
Author: Weck-Schwarz, Sibylle
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 2
Year: 1992
Pages: 345-352
.
Category: math
.
Summary: It is shown that the quotient maps of a monotopological construct {\bf A} which are preserved by pullbacks along embeddings, projections, or arbitrary morphisms, can be characterized by being quotient maps in appropriate extensions of {\bf A}. (English)
Keyword: hereditary quotient
Keyword: product-stable quotient
Keyword: pull\-back-stable quotient; extensional topological hull
Keyword: CCT hull
Keyword: topological universe hull; pretopological spaces
Keyword: pseudotopological spaces
MSC: 18A20
MSC: 18B30
MSC: 54A05
MSC: 54B30
MSC: 54C10
idZBL: Zbl 0795.18001
idMR: MR1189666
.
Date available: 2009-01-08T17:56:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118503
.
Reference: [Ad 86] Adámek, J.: Classification of concrete categories.Houston J. Math. 12 (1986), 305-326. MR 0869114
Reference: [AH 86] Adámek J., Herrlich H.: Cartesian closedness, quasitopoi and topological universes.Comment. Math. Univ. Carolinae 27 (1986), 235-257. MR 0857544
Reference: [ARS 91] Adámek J., Reiterman J., Schwarz F.: On universally topological hulls and quasitopos hulls.Houston J. Math. 17 (1991), 375-383. MR 1126601
Reference: [Al 85] Alderton I.W.: Cartesian closedness and the MacNeille completion of an initially structured category.Quaestiones Math. 8 (1985), 63-78. Zbl 0586.18006, MR 0821433
Reference: [Ar 63] Arhangel'skiĭ A.: Some types of factor mappings, and the relations between classes of topological spaces.Soviet Math. Dokl. 4 (1963), 1726-1729 Russian original Dokl. Akad. Nauk SSSR 153 (1963), 743-746. MR 0158362
Reference: [Ar 66] Arhangel'skiĭ A.: Mappings and spaces.Russian Math. Surveys 21 (1966), 115-162 Russian original Uspehi Mat. Nauk 21 (1966),133-184. MR 0227950
Reference: [BHL 91] Bentley H.L., Herrlich H., Lowen R.: Improving constructions in topology.Category Theory at Work H. Herrlich and H.-E. Porst (eds.) Heldermann Berlin (1991), 3-20. Zbl 0753.18002, MR 1147915
Reference: [Bo 75] Bourdaud G.: Espaces d'Antoine et semi-espaces d'Antoine.Cahiers Topol. Géom. Différentielle 16 (1975), 107-133. Zbl 0315.54005, MR 0394529
Reference: [DK 70] Day B.J., Kelly G.M.: On topological quotient maps preserved by pullbacks or products.Proc. Camb. Phil. Soc. 67 (1970), 553-558. Zbl 0191.20801, MR 0254817
Reference: [Ha 66] Hájek O.: Notes on quotient maps.Comment. Math. Univ. Carolinae 7 (1966), 319-323 Correction Comment. Math. Univ. Carolinae 8 (1967), 171. MR 0202118
Reference: [He 74] Herrlich H.: Cartesian closed topological categories.Math. Colloq. Univ. Cape Town 9 (1974), 1-16. Zbl 0318.18011, MR 0460414
Reference: [He 88a] Herrlich H.: Hereditary topological constructs.General Topology and Its Relations to Modern Analysis and Algebra VI (Proc. Prague 1986), Z. Frolík (ed.) Heldermann Berlin (1988), 249-262. Zbl 0662.18003, MR 0952611
Reference: [He 88b] Herrlich H.: On the representability of partial morphisms in Top and in related constructs.Categorical Algebra and Its Applications (Proc. Louvain-la-Neuve 1987), F. Bourceux (ed.), Lecture Notes Math. 1348 Springer Berlin et al. (1988), 143-153. Zbl 0662.18004, MR 0975967
Reference: [HN 77] Herrlich H., Nel L.D.: Cartesian closed topological hulls.Proc. Amer. Math. Soc. 62 (1977), 215-222. Zbl 0361.18006, MR 0476831
Reference: [Ke 69] Kent D.C.: Convergence quotient maps.Fund. Math. 65 (1969), 197-205. Zbl 0179.51002, MR 0250258
Reference: [Mi 68] Michael E.: Bi-quotient maps and cartesian products of quotient maps.Ann. Inst. Fourier Grenoble 18 (1968), 287-302. Zbl 0175.19704, MR 0244964
Reference: [Ne 77] Nel L.D.: Cartesian closed coreflective hulls.Quaestiones Math. 2 (1977), 269-283. Zbl 0366.18008, MR 0480687
Reference: [RT 91] Reiterman J., Tholen W.: Effective descent maps of topological spaces.York University Report 91-33 (1991).
Reference: [Sc 86] Schwarz F.: Hereditary topological categories and topological universes.Quaestiones Math. 10 (1986), 197-216. Zbl 0621.54007, MR 0871020
Reference: [Sc 89] Schwarz F.: Description of the topological universe hull.Categorical Methods in Computer Science with Aspects from Topology (Proc. Berlin 1988), E. Ehrig et al. (eds.), Lecture Notes Computer Science 393 Springer Berlin et al. (1989), 325-332. MR 1048372
Reference: [Sc 90] Schwarz F.: Extensionable topological hulls and topological universe hulls inside the category of pseudotopological spaces.Comment. Math. Univ. Carolinae 31 (1990), 123-127. MR 1056179
Reference: [We 91] Weck-Schwarz S.: Cartesian closed topological and monotopological hulls: A comparison.Topology Appl. 38 (1991), 263-274. Zbl 0733.18007, MR 1098906
Reference: [Wy 76] Wyler O.: Are there topoi in topology?.Categorical Topology (Proc. Mannheim 1975), E. Binz and H. Herrlich (eds.), Lecture Notes Math. 540 Springer Berlin et al. (1976), 699-719. Zbl 0354.54001, MR 0458346
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-2_16.pdf 311.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo