Previous |  Up |  Next


Title: Lower semicontinuous functions with values in a continuous lattice (English)
Author: van Gool, Frans
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 3
Year: 1992
Pages: 505-523
Category: math
Summary: It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.c\. functions to l.s.c\. functions with values in a continuous lattice. The results of this paper have some applications in potential theory. (English)
Keyword: continuous lattices
Keyword: lower semicontinuous functions
Keyword: potential theory
MSC: 06B30
MSC: 06B35
MSC: 31D05
MSC: 54C08
MSC: 54E15
MSC: 54F05
idZBL: Zbl 0769.06005
idMR: MR1209292
Date available: 2009-01-08T17:57:40Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage.Springer-Verlag, Berlin, 1986. Zbl 0706.31001, MR 0850715
Reference: [2] Borwein J.M., Théra M.: Sandwich Theorems for Semicontinuous Operators.preprint, 1990.
Reference: [3] Bourbaki N.: Topologie Générale, ch. IX.Hermann & Cie, Paris, 1948. MR 0027138
Reference: [4] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces.Springer-Verlag, Berlin, 1972. Zbl 0248.31011, MR 0419799
Reference: [5] Fletcher P., Lindgren W.F.: Quasi-uniform spaces.Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker inc., New York, 1982. Zbl 0583.54017, MR 0660063
Reference: [6] Gerritse G.: Lattice-valued Semicontinuous Functions.Report 8532, Catholic University of Nijmegen, 1985. Zbl 0872.54010
Reference: [7] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D.: A Compendium of Continuous Lattices.Springer-Verlag, Berlin, 1980. Zbl 0452.06001, MR 0614752
Reference: [8] van Gool F.A.: Non-linear Potential Theory.Preprint 606, University of Utrecht, 1990.
Reference: [9] Holwerda H.: Closed Hypographs, Semicontinuity and the Topological Closed-graph Theorem: A unifying Approach.Report 8935, Catholic University of Nijmegen, 1989.
Reference: [10] Katětov M.: On real-valued functions in topological spaces.Fundamenta Mathematicae 38 (1951), 85-91 Correction in Fund. Math. 40 (1953), 203-205. MR 0050264
Reference: [11] Nachbin L.: Topology and Order.Van Nostrand, Princeton, 1965. Zbl 0333.54002, MR 0219042
Reference: [12] Penot J.P., Théra M.: Semi-continuous mappings in general topology.Arch. Math. 38 (1982), 158-166.
Reference: [13] Tong H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289-292. Zbl 0046.16203, MR 0050265


Files Size Format View
CommentatMathUnivCarolRetro_33-1992-3_13.pdf 287.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo