Previous |  Up |  Next

Article

Title: A note on splittable spaces (English)
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 3
Year: 1992
Pages: 551-555
.
Category: math
.
Summary: A space $X$ is splittable over a space $Y$ (or splits over $Y$) if for every $A\subset X$ there exists a continuous map $f:X\rightarrow Y$ with $f^{-1} f A=A$. We prove that any $n$-dimensional polyhedron splits over $\bold R^{2n}$ but not necessarily over $\bold R^{2n-2}$. It is established that if a metrizable compact $X$ splits over $\bold R^n$, then $\dim X\leq n$. An example of $n$-dimensional compact space which does not split over $\bold R^{2n}$ is given. (English)
Keyword: splittable
Keyword: polyhedron
Keyword: dimension
MSC: 54A25
MSC: 54D99
idZBL: Zbl 0769.54004
idMR: MR1209296
.
Date available: 2009-01-08T17:58:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118522
.
Reference: [1] Arhangel'skii A.V.: A general concept of splittability of a topological space (in Russian).in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 8-10.
Reference: [2] Arhangel'skii A.V., Shakhmatov D.B.: Splittable spaces and questions of functions approximations (in Russian).in: Proceedings of the Fifth Tyraspol Symposium on General Topology and its Applications, Kishinev, Shtiintsa, 1985, 10-11.
Reference: [3] Arhangel'skii A.V., Shakhmatov D.B.: On pointwise approximation of arbitrary functions by countable families of continuous functions (in Russian).Trudy Seminara I.G. Petrovskogo 13 (1988), 206-227. MR 0961436
Reference: [4] Tkachuk V.V.: Approximation of $\bold R^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p(X)$.Comment. Math. Univ. Carolinae 27 (1986), 267-276. MR 0857546
Reference: [5] Bregman Yu.H., Šapirovskii B.E., Šostak A.P.: On partition of topological spaces.Časopis pro pěstování mat. 109 (1984), 27-53. MR 0741207
Reference: [6] Mazurkiewicz S.: Sur les problèmes $\kappa $ et $\lambda $ de Urysohn.Fund. Math. 10 (1927), 311-319.
Reference: [7] Tkachuk V.: Remainders over discrete spaces - some applications (in Russian).Vestnik MGU, Mat., Mech., no. 4, 1990, 18-21. MR 1086601
Reference: [8] Malyhin V.I.: $\beta N$ is prime.Bull. Acad. Polon. Sci., Ser. Mat. 27 (1979), 295-297. Zbl 0433.54015, MR 0552052
Reference: [9] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [10] Skljarenko E.G.: A theorem on maps, lowering dimension (in Russian).Bull. Acad. Polon. Sci., Ser. Mat. 10 (1962), 429-432. MR 0149445
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-3_17.pdf 187.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo