Previous |  Up |  Next

Article

Title: Multivalued pseudo-contractive mappings defined on unbounded sets in Banach spaces (English)
Author: Morales, Claudio H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 625-630
.
Category: math
.
Summary: Let $X$ be a real Banach space. A multivalued operator $T$ from $K$ into $2^X$ is said to be pseudo-contractive if for every $x,y$ in $K$, $u\in T(x)$, $v\in T(y)$ and all $r>0$, $\|x-y\|\leq \|(1+r)(x-y)-r(u-v)\|$. Denote by $G(z,w)$ the set $\{u\in K :\|u-w\|\leq \|u-z\|\}$. Suppose every bounded closed and convex subset of $X$ has the fixed point property with respect to nonexpansive selfmappings. Now if $T$ is a Lipschitzian and pseudo-contractive mapping from $K$ into the family of closed and bounded subsets of $K$ so that the set $G(z,w)$ is bounded for some $z\in K$ and some $w\in T(z)$, then $T$ has a fixed point in $K$. (English)
Keyword: pseudo-contractive mappings
MSC: 47H04
MSC: 47H09
MSC: 47H10
idZBL: Zbl 0794.47038
idMR: MR1240184
.
Date available: 2009-01-08T17:59:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118534
.
Reference: [1] Browder F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces.Bull. Amer. Math. Soc. 73 (1967), 875-882. Zbl 0176.45302, MR 0232255
Reference: [2] Canetti A., Marino G., Pietramala P.: Fixed point theorems for multivalued mappings in Banach spaces.Nonlinear Analysis, T.M.A. 17 (199011-20). Zbl 0765.47016, MR 1113446
Reference: [3] Downing D., Kirk W.A.: Fixed point theorems for set-valued mappings in metric and Banach spaces.Math. Japonica 22 (1977), 99-112. Zbl 0372.47030, MR 0473934
Reference: [4] Goebel K., Kuczumow T.: A contribution to the theory of nonexpansive mappings.preprint. Zbl 0437.47040, MR 0584472
Reference: [5] Kato T.: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. Zbl 0163.38303, MR 0226230
Reference: [6] Kirk W.A., Ray W.O.: Fixed point theorems for mappings defined on unbounded sets in Banach spaces.Studia Math 64 (1979), 127-138. Zbl 0412.47033, MR 0537116
Reference: [7] Morales C.H.: Pseudo-contractive mappings and the Leray-Schauder boundary condition.Comment. Math. Univ. Carolinae 20 (1979), 745-756. Zbl 0429.47021, MR 0555187
Reference: [8] Morales C.H.: Remarks on pseudo-contractive mappings.J. Math. Anal. Appl. 87 (1982), 158-164. Zbl 0486.47030
Reference: [9] Morales C.H.: Set-valued mappings in Banach spaces.Houston J. Math. 9 (1983), 245-253. Zbl 0523.47038, MR 0703273
Reference: [10] Nadler S.B., Jr.: Multi-valued contraction mappings.Pacific J. Math. 30 (1969), 475-488. Zbl 0187.45002, MR 0254828
Reference: [11] Ray W.O.: The fixed point property and unbounded sets in Hilbert space.Trans. Amer. Math. Soc. 258 (1980), 531-537. Zbl 0433.47026, MR 0558189
Reference: [12] Ray W.O.: Zeros of accretive operators defined on unbounded sets.Houston J. Math. 5 (1979), 133-139. Zbl 0412.47032, MR 0533647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_8.pdf 185.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo