Previous |  Up |  Next

Article

Title: On a weak Freudenthal spectral theorem (English)
Author: Wójtowicz, Marek
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 631-643
.
Category: math
.
Summary: Let $X$ be an Archimedean Riesz space and $\Cal P(X)$ its Boolean algebra of all band projections, and put $\Cal P_{e}=\{P e:P\in \Cal P(X)\}$ and $\Cal B_{e}=\{x\in X: x\wedge (e-x)=0\}$, $e\in X^+$. $X$ is said to have Weak Freudenthal Property (\text{$\operatorname{WFP}$}) provided that for every $e\in X^+$ the lattice $lin\, \Cal P_{e}$ is order dense in the principal band $e^{d d}$. This notion is compared with strong and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by Veksler and Lavrič, respectively. \text{$\operatorname{WFP}$} is equivalent to $X^+$-denseness of $\Cal P_{e}$ in $\Cal B_{e}$ for every $e\in X^+$, and every Riesz space with sufficiently many projections has \text{$\operatorname{WFP}$} (THEOREM). (English)
Keyword: Freudenthal spectral theorem
Keyword: band
Keyword: band projection
Keyword: Boolean algebra
Keyword: disjointness
MSC: 06B10
MSC: 06E99
MSC: 46A40
idZBL: Zbl 0777.46006
idMR: MR1240185
.
Date available: 2009-01-08T17:59:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118535
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.New York-London, Academic Press, 1978. Zbl 1043.46003, MR 0493242
Reference: [2] Curtis P.C.: A note concerning certain product spaces.Arch. Math. 11 (1960), 50-52. Zbl 0093.12602, MR 0111008
Reference: [3] Duhoux M., Meyer M.: Extended orthomorphisms on Archimedean Riesz spaces.Annali di Matematica pura ed appl. 33 (1983), 193-236. Zbl 0526.46010, MR 0725026
Reference: [4] Efimov B., Engelking R.: Remarks on dyadic spaces II.Coll. Math. 13 (1965), 181-197. Zbl 0137.16104, MR 0188964
Reference: [5] Lavrič B.: On Freudenthal's spectral theorem.Indag. Math. 48 (1986), 411-421. Zbl 0619.46005, MR 0869757
Reference: [6] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam and London, 1971.
Reference: [7] Semadeni Z.: Banach Spaces of Continuous Functions.Polish Scientific Publishers, Warszawa, 1971. Zbl 0478.46014, MR 0296671
Reference: [8] Veksler A.I.: Projection properties of linear lattices and Freudenthal's theorem (in Russian).Math. Nachr. 74 (1976), 7-25. MR 0430736
Reference: [9] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, New York-Oxford, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_9.pdf 249.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo