Previous |  Up |  Next

Article

Title: On oriented vector bundles over CW-complexes of dimension 6 and 7 (English)
Author: Čadek, Martin
Author: Vanžura, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 727-736
.
Category: math
.
Summary: Necessary and sufficient conditions for the existence of $n$-dimensional oriented vector bundles ($n=3,4,5$) over CW-complexes of dimension $\le 7$ with prescribed Stiefel-Whitney classes $w_2=0$, $w_4 $ and Pontrjagin class $p_1$ are found. As a consequence some results on the span of 6 and 7-dimensional oriented vector bundles are given in terms of characteristic classes. (English)
Keyword: CW-complex
Keyword: oriented vector bundle
Keyword: characteristic classes
Keyword: Postnikov tower
MSC: 55R25
MSC: 57R20
MSC: 57R22
MSC: 57R25
idZBL: Zbl 0790.57016
idMR: MR1240195
.
Date available: 2009-01-08T18:00:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118545
.
Reference: [1] Čadek M., Vanžura J.: On the classification of oriented vector bundles over 5-complexes.preprint. MR 1258434
Reference: [2] Dold A., Whitney H.: Classification of oriented sphere bundles over a 4-complex.Ann. of Math. (1959), 69 667-677. Zbl 0124.38103, MR 0123331
Reference: [3] James I., Thomas E.: An approach to the enumeration problem for non-stable vector bundles.J. Math. Mech. (1965), 14 485-506. Zbl 0142.40701, MR 0175134
Reference: [4] Milnor J.: Some consequences of a theorem of Bott.Ann. of Math. (1958), 68 444-449. Zbl 0085.17301, MR 0102805
Reference: [5] Tze-Beng Ng: On the geometric dimension of vector bundles, span of manifold and immersion of manifolds in manifolds.Exposition. Math. (1990), 8 193-226. MR 1062767
Reference: [6] Quillen D.: The mod 2 cohomology rings of extra-special 2-groups and their spinor groups.Math. Ann. (1971), 194 197-212. MR 0290401
Reference: [7] Thomas E.: On the cohomology of the real Grassmann complexes.Trans. Amer. Math. Soc. (1960), 96 67-89. Zbl 0098.36301, MR 0121800
Reference: [8] Thomas E.: Homotopy classification of maps by cohomology homomorphisms.Trans. Amer. Math. Soc. (1964), 111 138-151. Zbl 0119.18401, MR 0160212
Reference: [9] Thomas E.: Seminar on fibre bundles.Lecture Notes in Math., no 13 Springer Berlin - Heidelberg - New York (1966). MR 0203733
Reference: [10] Thomas E.: Postnikov invariants and higher order cohomology operation.Ann. of Math. (1967), 85 184-217. MR 0210135
Reference: [11] Thomas E.: Real and complex vector fields on manifolds.J. Math. Mech. (1967), 16 1183-1206. Zbl 0153.53503, MR 0210136
Reference: [12] Thomas E.: Fields of $k$-planes on manifolds.Invent. Math. (1967), 3 334-347. MR 0217814
Reference: [13] Thomas E.: Vector fields on low dimensional manifolds.Math. Z. (1968), 103 85-93. Zbl 0162.55403, MR 0224109
Reference: [14] Woodward L.M.: The classification of orientable vector bundles over CW-complexes of small dimension.Proc. Roy. Soc. Edinburgh (1982), 92A 175-179. Zbl 0505.55017, MR 0677482
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_19.pdf 219.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo