Previous |  Up |  Next

Article

Title: A general upper bound in extremal theory of sequences (English)
Author: Klazar, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 4
Year: 1992
Pages: 737-746
.
Category: math
.
Summary: We investigate the extremal function $f(u,n)$ which, for a given finite sequence $u$ over $k$ symbols, is defined as the maximum length $m$ of a sequence $v=a_1a_2...a_m$ of integers such that 1) $1 \leq a_i \leq n$, 2) $a_i=a_j, i\not =j$ implies $|i-j|\geq k$ and 3) $v$ contains no subsequence of the type $u$. We prove that $f(u,n)$ is very near to be linear in $n$ for any fixed $u$ of length greater than 4, namely that $$ f(u,n)=O(n2^{O(\alpha (n)^{|u|-4})}). $$ Here $|u|$ is the length of $u$ and $\alpha (n)$ is the inverse to the Ackermann function and goes to infinity very slowly. This result extends the estimates in [S] and [ASS] which treat the case $u=abababa\ldots $ and is achieved by similar methods. (English)
Keyword: sequence
Keyword: Davenport-Schinzel sequence
Keyword: length
Keyword: upper bound
MSC: 05D99
MSC: 68R15
idZBL: Zbl 0781.05049
idMR: MR1240196
.
Date available: 2009-01-08T18:00:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118546
.
Reference: [AKV] Adamec R., Klazar M., Valtr P.: Generalized Davenport-Schinzel sequences with linear upper bound.Topological, algebraical and combinatorial structures (ed. J.Nešetřil), North Holland, to appear. Zbl 0768.05007, MR 1189846
Reference: [ASS] Agarwal P., Sharir M., Shor P.: Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences.J. of Comb. Th. A 52 (1989), 228-274. Zbl 0697.05003, MR 1022320
Reference: [DS] Davenport H., Schinzel M.: A combinatorial problem connected with differential equations I and II.Amer. J. Math. 87 (1965), 684-689 and Acta Arithmetica 17 (1971), 363-372. MR 0190010
Reference: [ES] Erdös P., Szekeres G.: A combinatorial problem in geometry.Compocito Math. 2 (1935), 464-470.
Reference: [FH] Füredi Z., Hajnal P.: Davenport-Schinzel theory of matrices.Discrete Math. (1991). MR 1171777
Reference: [HS] Hart S., Sharir M.: Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica 6 (1986), 151-177. Zbl 0636.05003, MR 0875839
Reference: [K] Komjáth P.: A simplified construction of nonlinear Davenport-Schinzel sequences.J. of Comb. Th. A 49 (1988), 262-267. MR 0964387
Reference: [Kl] Klazar M.: A linear upper bound in extremal theory of sequences.to appear in J. of Comb. Th. A. Zbl 0808.05096, MR 1297182
Reference: [S] Sharir M.: Almost linear upper bounds on the length of generalized Davenport-Schinzel sequences.Combinatorica 7 (1987), 131-143. MR 0905160
Reference: [Sz] Szemerédi E.: On a problem by Davenport and Schinzel.Acta Arithm. 15 (1974), 213-224. MR 0335463
Reference: [WS] Wiernick A., Sharir M.: Planar realization of nonlinear Davenport-Schinzel sequences by segments.Discrete Comp. Geom. 3 (1988), 15-47. MR 0918177
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-4_20.pdf 227.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo