[1] Corner A.L.S.: 
Every countable reduced torsion-free ring is an endomorphism ring. Proc. London Math. Soc. (3) 13 (1963), 687-710. 
MR 0153743[2] Corner A.L.S.: 
On the existence of very decomposable Abelian groups. in Abelian Group Theory, Proceedings Honolulu 1982/83, LNM 1006, Springer-Verlag, Berlin,1983. 
MR 0722629[3] Corner A.L.S., Göbel R.: 
Prescribing endomorphism algebras, a unified treatment. Proc. London Math. Soc. (3) 50 (1985), 447-479. 
MR 0779399[4] Dugas M., Göbel R.: 
Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc.(3) 45 (1982), 319-336. 
MR 0670040[5] Dugas M., Göbel R.: 
Every cotorsion-free algebra is an endomorphism algebra. Math. Z. 181 (1982), 451-470. 
MR 0682667[6] Dugas M., Göbel R.: 
Almost $\Sigma $-cyclic Abelian $p$-groups in $L$. in Abelian Groups and Modules (Udine 1984), CISM Courses and Lectures No. 287, Springer-Verlag, Wien-New York, 1984. 
MR 0789809[7] Dugas M., Göbel R.: 
Torsion-free Abelian groups with prescribed finitely topologized endomorphism rings. Proc. Amer. Math. Soc. 90 (1984), 519-527. 
MR 0733399[8] Eklof P., Mekler A.: 
On constructing indecomposable groups in $L$. J. Algebra 49 (1977), 96-103. 
MR 0457197 | 
Zbl 0372.20042[10] Fuchs L.: 
Infinite Abelian Groups. Vol. I (1970), vol. II (1973), Academic Press, New York. 
MR 0255673 | 
Zbl 0338.20063[11] Göbel R., Goldsmith B.: 
Essentially indecomposable modules which are almost free. Quart. J. Math. (Oxford) (2) 39 (1988), 213-222. 
MR 0947502[12] Göbel R., Goldsmith B.: 
Mixed modules in $L$. Rocky Mountain J. Math. 19 (1989), 1043-58. 
MR 1039542[13] Göbel R., Goldsmith B.: 
On almost-free modules over complete discrete valuation rings. Rend. Sem. Mat. Univ. Padova 86 (1991), 75-87. 
MR 1154100