Previous |  Up |  Next

Article

Title: Cotorsion-free algebras as endomorphism algebras in $L$ - the discrete and topological cases (English)
Author: Göbel, R.
Author: Goldsmith, B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 1-9
.
Category: math
.
Summary: The discrete algebras $A$ over a commutative ring $R$ which can be realized as the full endomorphism algebra of a torsion-free $R$-module have been investigated by Dugas and Göbel under the additional set-theoretic axiom of constructi\-bi\-li\-ty, $V=L$. Many interesting results have been obtained for cotorsion-free algebras but the proofs involve rather elaborate calculations in linear algebra. Here these results are re\-derived in a more natural topological setting and substantial generalizations to topological algebras (which could not be handled in the previous linear algebra approach) are obtained. The results obtained are independent of the usual Zermelo-Fraenkel set theory ZFC. (English)
Keyword: cotorsion-free
Keyword: endomorphism algebra
Keyword: axiom of constructibility
Keyword: Zermelo-Fraenkel set theory
MSC: 03C60
MSC: 03E35
MSC: 16A65
MSC: 16S50
MSC: 16W80
MSC: 20K20
MSC: 20K30
idZBL: Zbl 0804.16031
idMR: MR1240198
.
Date available: 2009-01-08T18:00:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118550
.
Reference: [1] Corner A.L.S.: Every countable reduced torsion-free ring is an endomorphism ring.Proc. London Math. Soc. (3) 13 (1963), 687-710. MR 0153743
Reference: [2] Corner A.L.S.: On the existence of very decomposable Abelian groups.in Abelian Group Theory, Proceedings Honolulu 1982/83, LNM 1006, Springer-Verlag, Berlin,1983. MR 0722629
Reference: [3] Corner A.L.S., Göbel R.: Prescribing endomorphism algebras, a unified treatment.Proc. London Math. Soc. (3) 50 (1985), 447-479. MR 0779399
Reference: [4] Dugas M., Göbel R.: Every cotorsion-free ring is an endomorphism ring.Proc. London Math. Soc.(3) 45 (1982), 319-336. MR 0670040
Reference: [5] Dugas M., Göbel R.: Every cotorsion-free algebra is an endomorphism algebra.Math. Z. 181 (1982), 451-470. MR 0682667
Reference: [6] Dugas M., Göbel R.: Almost $\Sigma $-cyclic Abelian $p$-groups in $L$.in Abelian Groups and Modules (Udine 1984), CISM Courses and Lectures No. 287, Springer-Verlag, Wien-New York, 1984. MR 0789809
Reference: [7] Dugas M., Göbel R.: Torsion-free Abelian groups with prescribed finitely topologized endomorphism rings.Proc. Amer. Math. Soc. 90 (1984), 519-527. MR 0733399
Reference: [8] Eklof P., Mekler A.: On constructing indecomposable groups in $L$.J. Algebra 49 (1977), 96-103. Zbl 0372.20042, MR 0457197
Reference: [9] Eklof P., Mekler A.: Almost Free Modules: Set-Theoretic Methods.North Holland, 1990. Zbl 1054.20037, MR 1055083
Reference: [10] Fuchs L.: Infinite Abelian Groups.Vol. I (1970), vol. II (1973), Academic Press, New York. Zbl 0338.20063, MR 0255673
Reference: [11] Göbel R., Goldsmith B.: Essentially indecomposable modules which are almost free.Quart. J. Math. (Oxford) (2) 39 (1988), 213-222. MR 0947502
Reference: [12] Göbel R., Goldsmith B.: Mixed modules in $L$.Rocky Mountain J. Math. 19 (1989), 1043-58. MR 1039542
Reference: [13] Göbel R., Goldsmith B.: On almost-free modules over complete discrete valuation rings.Rend. Sem. Mat. Univ. Padova 86 (1991), 75-87. MR 1154100
Reference: [14] Jech T.: Set Theory.Academic Press, New York, 1978. Zbl 1007.03002, MR 0506523
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_1.pdf 225.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo