Previous |  Up |  Next

Article

Title: On global existence and stationary solutions for two classes of semilinear parabolic problems (English)
Author: Quittner, Pavol
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 105-124
.
Category: math
.
Summary: We investigate stationary solutions and asymptotic behaviour of solutions of two boundary value problems for semilinear parabolic equations. These equations involve both blow up and damping terms and they were studied by several authors. Our main goal is to fill some gaps in these studies. (English)
Keyword: global existence
Keyword: blow up
Keyword: semilinear parabolic equation
Keyword: stationary solution
MSC: 35B30
MSC: 35B40
MSC: 35J65
MSC: 35K60
idZBL: Zbl 0794.35089
idMR: MR1240209
.
Date available: 2009-01-08T18:01:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118561
.
Reference: [AW] Alfonsi L., Weissler F.B.: Blow up in $\Bbb R^n$ for a parabolic equation with a damping nonlinear gradient term.Nonlinear Diffusion Equations and Their Equilibrium States, 3, N.G. Lloyd, W.M. Ni, L.A. Peletier, J. Serrin (eds.), Birkhäuser, Boston-Basel-Berlin, 1992. MR 1167826
Reference: [AH] Alikakos N.D., Hess P.: Liapunov operators and stabilization in strongly order preserving dynamical systems.Diff. Integral Equs. 4 (1991), 15-24. MR 1079608
Reference: [A1] Amann H.: Parabolic evolution equations and nonlinear boundary conditions.J. Diff. Equations 72 (1988), 201-269. Zbl 0658.34011, MR 0932367
Reference: [A2] Amann H.: Dynamic theory of quasilinear parabolic equations: II. Reaction-diffusion systems.Diff. Integral Equs. 3 (1990), 13-75. Zbl 0729.35062, MR 1014726
Reference: [BT] Brézis H., Turner R.E.L.: On a class of superlinear elliptic problems.Comm. in P.D.E. 2 (1977), 601-614. MR 0509489
Reference: [C] Chipot M.: On a class of nonlinear elliptic equations.Proceedings of the Banach Center, to appear. Zbl 0819.35051, MR 1205813
Reference: [CFQ] Chipot M., Fila M., Quittner P.: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.Acta Math. Univ. Comenianae 60 (1991), 35-103. Zbl 0743.35038, MR 1120596
Reference: [CW1] Chipot M., Weissler F.B.: Some blow up results for a nonlinear parabolic equation with a gradient term.SIAM J. Math. Anal. 20 (1989), 886-907. MR 1000727
Reference: [CW2] Chipot M., Weissler F.B.: On the elliptic problem $\triangle u-|\nabla u|^q+łu^p=0$.Nonlinear Diffusion Equations and Their Equilibrium States, Vol. I, W.-M. Ni, L.A. Peletier, J.B. Serrin (eds.), Springer, New York, 1988, pp. 237-243. Zbl 0699.35102, MR 0956067
Reference: [E] Escher J.: Global existence and nonexistence for semilinear parabolic systems with nonlinear boundary conditions.Math. Ann. 284 (1989), 285-305. Zbl 0652.35065, MR 1000112
Reference: [FLN] de Figueiredo D.G., Lions P.-L., Nussbaum R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations.J. Math. pures et appl. 61 (1982), 41-63. Zbl 0452.35030, MR 0664341
Reference: [F] Fila M.: Remarks on blow up for a nonlinear parabolic equation with a gradient term.Proc. Amer. Math. Soc. 111 (1991), 795-801. Zbl 0768.35047, MR 1052569
Reference: [FQ1] Fila M., Quittner P.: The blow-up rate for the heat equation with a nonlinear boundary condition.Math. Meth. Appl. Sci. 14 (1991), 197-205. Zbl 0735.35014, MR 1099325
Reference: [FQ2] Fila M., Quittner P.: Radial ground states for a semilinear elliptic equation with a gradient term.to appear in Adv. Math. Sci. Appl. MR 1239247
Reference: [FK] Filo J., Kačur J.: Local existence of general nonlinear parabolic systems.to appear.
Reference: [KP] Kawohl B., Peletier L.A.: Observations on blow up and dead cores for nonlinear parabolic equations.Math. Z. 202 (1989), 207-217. Zbl 0661.35053, MR 1013085
Reference: [GT] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order.second edition, Springer, Berlin-Heidelberg-New York-Tokyo, 1983. Zbl 1042.35002, MR 0737190
Reference: [LGMW] López Gómez J., Márquez V., Wolanski N.: Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition.IMA Preprint Series #810, May 1991. MR 1120912
Reference: [Q1] Quittner P.: Blow-up for semilinear parabolic equations with a gradient term.Math. Meth. Appl. Sci. 14 (1991), 413-417. Zbl 0768.35049, MR 1119238
Reference: [Q2] Quittner P.: On positive solutions of semilinear elliptic problems.Comment. Math. Univ. Carolinae 30 (1989), 579-585. Zbl 0698.35057, MR 1031874
Reference: [S] Schaaf R.: Global Solution Branches of Two Point Boundary Value Problems.LNM 1458, Springer, Berlin-Heidelberg, 1990. Zbl 0780.34010, MR 1090827
Reference: [SZ] Serrin J.B., Zou H.: Existence and non-existence results for ground states of quasilinear elliptic equations.to appear. Zbl 0795.35027
Reference: [SW] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton, New Jersey, 1971.. MR 0304972
Reference: [S1] Struwe M.: Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces.Ann. Inst. Henri Poincaré, Analyse non linéaire 5 (1988), 425-464. Zbl 0664.35022, MR 0970849
Reference: [S2] Struwe M.: Plateau's Problem and the Calculus of Variations.Mathematical Notes 35, Princeton, New Jersey, 1988. Zbl 0694.49028, MR 0992402
Reference: [S3] Struwe M.: Variational methods and their applications to nonlinear partial differential equations and Hamiltonian systems.Springer, Berlin-Heidelberg, 1990. MR 1078018
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_12.pdf 316.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo