Previous |  Up |  Next

Article

Title: Convergence theorems for set-valued conditional expectations (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 1
Year: 1993
Pages: 97-104
.
Category: math
.
Summary: In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy's martingale convergence theorem, while the second involves a nonmonotone sequence of sub $\sigma $-fields. (English)
Keyword: measurable multifunction
Keyword: set-valued conditional expectation
Keyword: Levy's theorem
Keyword: support function
Keyword: Kuratowski-Mosco convergence of sets
MSC: 28B20
MSC: 60D05
MSC: 60F99
MSC: 60G48
MSC: 60G99
idZBL: Zbl 0788.60021
idMR: MR1240208
.
Date available: 2009-01-08T18:01:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118560
.
Reference: [1] Alo R., deKorvin A., Roberts R.: The optional sampling theorem for convex set valued martingales.J. Reine Angew. Math. 310 (1979), 1-6. MR 0546661
Reference: [2] Artstein Z., Hart S.: Law of large numbers for random sets and allocation processes.Math. Oper. Res. 6 (1981), 485-492. Zbl 0524.28015, MR 0703091
Reference: [3] Attouch H.: Famille d'opérateurs maximaux monotones et mesurabilité.Ann. Mat. Pura ed Appl. 120 (1979), 35-111. MR 0551062
Reference: [4] Diestel J. Uhl J.: Vector Measures.Math. Surveys, vol. 15, AMS, Providence, RI, 1977. MR 0453964
Reference: [5] Dynkin E., Evstigneev I.: Regular conditional expectations of correspondences.Theory of Prob. and Appl. 21 (1976), 325-338. Zbl 0367.60002, MR 0430204
Reference: [6] Fetter H.: On the continuity of conditional expectations.J. Math. Anal. Appl. 61 (1977), 227-231. Zbl 0415.60003, MR 0455110
Reference: [7] Hanen A., Neveu J.: Atomes conditionels d'un espace de probabilité.Acta Math. Hungarica 17 (1966), 443-449. MR 0205285
Reference: [8] Hess C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions.J. Math. Anal. Appl. 153 (1990), 206-249. Zbl 0748.47046, MR 1080128
Reference: [9] Hiai F.: Radon-Nikodym theorems for set-valued measures.J. Multiv. Anal. 8 (1978), 96-118. Zbl 0384.28006, MR 0583862
Reference: [10] Hiai F., Umegaki H.: Integrals, conditional expectations and martingales of multivalued functions.J. Multiv. Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504
Reference: [11] deKorvin A., Kleyle R.: A convergence theorem for convex set-valued supermartingales.Stoch. Anal. Appl. 3 (1985), 433-445. MR 0808943
Reference: [12] Luu D.Q.: Quelques resultats de representation des amarts uniforms multivoques.C.R. Acad. Su. Paris 300 (1985), 63-63.
Reference: [13] Metivier M.: Semimartingales.DeGruyter, Berlin 1982. Zbl 0595.60008, MR 0688144
Reference: [14] Mosco U.: Convergence of convex sets and solutions of variational inequalities.Advances in Math. 3 (1969), 510-585. MR 0298508
Reference: [15] Papageorgiou N.S.: On the efficiency and optimality of allocations II.SIAM J. Control Optim. 24 (1986), 452-479. Zbl 0589.90015, MR 0838050
Reference: [16] Papageorgiou N.S.: Convergence theorem for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595
Reference: [17] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 1: Integration and conditional expectation.J. Multiv. Anal. 17 (1985), 185-206. MR 0808276
Reference: [18] Papageorgiou N.S.: On the theory of Banach space valued multifunctions. Part 2: Set valued martingales and set valued measures.J. Multiv. Anal. 17 (1985), 207-227. MR 0808277
Reference: [19] Papageorgiou N.S.: A convergence theorem for set-valued supermartingales in a separable Banach space.Stoch. Anal. Appl. 5 (1988), 405-422. MR 0912867
Reference: [20] Papageorgiou N.S., Kandilakis D.: Convergence in approximation and nonsmooth analysis.J. Approx. Theory 49 (1987), 41-54. Zbl 0619.41033, MR 0870548
Reference: [21] Salinetti G. Wets R.: On the convergence of sequences of convex sets in finite dimensions.SIAM Review 21 (1979), 18-33. MR 0516381
Reference: [22] Thibault L.: Esperances conditionelles d'integrandes semicontinus.Ann. Inst. H. Poincaré Ser. B 17 (1981), 337-350. MR 0644351
Reference: [23] Wagner D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-1_11.pdf 207.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo