Previous |  Up |  Next

Article

Title: A finite dimensional reduction of the Schauder Conjecture (English)
Author: De Pascale, Espedito
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 401-404
.
Category: math
.
Summary: Schauder's Conjecture (i.e\. every compact convex set in a Hausdorff topological vector space has the f.p.p.) is reduced to the search for fixed points of suitable multivalued maps in finite dimensional spaces. (English)
Keyword: compact convex set
Keyword: fixed point property
Keyword: multivalued map
Keyword: local convexity
Keyword: topological vector space
Keyword: Schauder Conjecture.
MSC: 46A16
MSC: 47H04
MSC: 47H10
MSC: 54C60
MSC: 54H25
idZBL: Zbl 0805.47056
idMR: MR1243070
.
Date available: 2009-01-08T18:04:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118595
.
Reference: [1] Aubin J.P., Frankowska H.: Set-Valued Analysis.Birkhäuser, 1990. Zbl 1168.49014, MR 1048347
Reference: [2] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.: Topological methods in the theory of fixed points of multivalued mappings.Russian Math. Surveys 35 (1980), 65-143. MR 0565568
Reference: [3] Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V.: Multivalued mappings.J. Sov. Math. (1984), 719-791.
Reference: [4] Bourgin D.G.: A degree for nonacyclic multiple-valued transformation.Bull. Amer. Math. Soc. 80 (1974), 59-61. MR 0326505
Reference: [5] Bourgin D.G.: A generalization of the mapping degree.Can. J. Math. 26 (1974), 1109-1117. Zbl 0303.55004, MR 0365552
Reference: [6] Connelly R.: An extension of Brower's fixed-point theorem to nonacyclic, set-valued functions.Proc. Amer. Math. Soc. 43 (1974), 214-218. MR 0339144
Reference: [7] Dzedzey Z.: Fixed point index theory for a class of nonacyclic multivalued maps.Diss. Math. CCLIII (1985).
Reference: [8] Eilenberg S., Montgomery D.: Fixed point theorems for multivalued transformations.Amer. J. Math. 58 (1946), 214-222. Zbl 0060.40203, MR 0016676
Reference: [9] Fan K.: Sur un théorème minimax.C. R. Acad. Sci. Paris, Groupe 1, 259 (1962), 3925-3928. MR 0174955
Reference: [10] Gorniewicz L.: Fixed point theorems for multivalued maps of subsets of Euclidean spaces.Bull. Pol. Acad. Sci., Math. 27 (1979), 111-115. MR 0539341
Reference: [11] Granas A.: K K M-maps and their applications to non linear problems.see 16, 45-61.
Reference: [12] Hadžic O.: Fixed point theory in topological vector spaces.University of Novi Sad, Novi Sad, 1984. MR 0789224
Reference: [13] Idzik A.: On $\gamma-$almost fixed point theorems. The single valued case.Bull. Pol. Acad. Sci. Math. 35 (1987), 461-464. Zbl 0663.47036, MR 0939008
Reference: [14] Kalton N.J.: An $F$-space with trivial dual where the Krein-Milman theorem holds.Israel J. Math. 36 (1980), 41-49. Zbl 0439.46022, MR 0589656
Reference: [15] Krauthausen C.: Der Fixpunktsatz von Schauder in nicht notwendig Konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen.Dissertation, TH Aachen, 1976.
Reference: [16] Mauldin R.D. editor: The Scottish Book.Birkhäuser, 1981. MR 0666400
Reference: [17] O'Neill B.: A fixed point theorem for multivalued functions.Duke Math. J. 24 (1957), 61-62.
Reference: [18] O'Neill B.: Induced homology homomorphism for set-valued maps.Pac. J. Math. 7 (1957), 1179-1184. MR 0104226
Reference: [19] Powers M.J.: Lefschetz fixed point theorems for a new class of multivalued maps.Pac. J. Math. 42 (1972), 211-220. MR 0334189
Reference: [20] Schauder J.: Der Fixpunktsatz in Funktionalräumen.Studia Math. 2 (1930), 171-180.
Reference: [21] Tychonoff A.: Ein Fixpunktsatz.Math. Ann. 111 (1935), 767-776. Zbl 0012.30803, MR 1513031
Reference: [22] Weber H.: Compact convex sets in non locally convex linear spaces.to appear in Note Mat., 1992. Zbl 0846.46004, MR 1258580
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_1.pdf 160.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo