Previous |  Up |  Next

Article

Title: On the topological structure of compact 5-manifolds (English)
Author: Cavicchioli, Alberto
Author: Spaggiari, Fulvia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 513-524
.
Category: math
.
Summary: We classify the genus one compact (PL) 5-manifolds and prove some results about closed 5-manifolds with free fundamental group. In particular, let $M$ be a closed connected orientable smooth $5$-manifold with free fundamental group. Then we prove that the number of distinct smooth $5$-manifolds homotopy equivalent to $M$ equals the $2$-nd Betti number (mod $2$) of $M$. (English)
Keyword: colored graph
Keyword: crystallization
Keyword: genus
Keyword: manifold
Keyword: surgery
Keyword: s-cobordism
Keyword: normal invariants
Keyword: homotopy type
MSC: 57N15
MSC: 57N65
MSC: 57Q25
MSC: 57R67
idZBL: Zbl 0784.57009
idMR: MR1243082
.
Date available: 2009-01-08T18:05:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118607
.
Reference: [1] Barden D.: Simply connected five-manifolds.Ann. of Math. 82 (1965), 365-385. Zbl 0136.20602, MR 0184241
Reference: [2] Bracho J., Montejano L.: The combinatorics of colored triangulations of manifolds.Geom. Dedicata 22 (1987), 303-328. Zbl 0631.57017, MR 0887580
Reference: [3] Cappell S.: Mayer-Vietoris sequences in hermitian $K$-theory.preprint. Zbl 0298.57021, MR 0358814
Reference: [4] Cavicchioli A.: A combinatorial characterization of $\Bbb S^3\times \Bbb S^1$ among closed 4-manifolds.Proc. Amer. Math. Soc. 105 (1989), 1008-1014. MR 0931726
Reference: [5] Ferri M., Gagliardi C., Grasselli L.: A graph-theoretical representation of PL-manifolds. A survey on crystallizations.Aequationes Math. 31 (1986), 121-141. Zbl 0623.57012, MR 0867510
Reference: [6] Mandelbaum R.: Four-dimensional topology: an introduction.Bull. Amer. Math. Soc. 2 (1980), 1-159. Zbl 0476.57005, MR 0551752
Reference: [7] Milnor J.W.: A procedure for killing the homotopy groups of differentiable manifolds.in Proc. Symp. in Pure Math. (Differential Geometry), Amer. Math. Soc. 3 (1961), 39-55. MR 0130696
Reference: [8] Milnor J.: Whitehead torsion.Bull. Amer. Math. Soc. 72 (1966), 358-426. Zbl 0147.23104, MR 0196736
Reference: [9] Rourke C.P., Sanderson B.J.: Introduction to piecewise-linear topology.Springer-Verlag Ed., Berlin-Heidelberg-New York, 1972. Zbl 0477.57003, MR 0350744
Reference: [10] Shaneson J.L.: Wall's surgery obstruction groups for $G\times \Bbb Z$.Ann. of Math. 90 (1969), 296-334. MR 0246310
Reference: [11] Shaneson J.L.: Non-simply connected surgery and some results in low dimension topology.Comm. Math. Helv. 45 (1970), 333-352. MR 0275444
Reference: [12] Shaneson J.L.: On non-simply connected manifolds.in Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, Rhode Island 22 (1970), 221-229. Zbl 0226.57007, MR 0358816
Reference: [13] Smale S.: On the structure of 5-manifolds.Ann. of Math. 75 (1962), 38-46. Zbl 0101.16103, MR 0141133
Reference: [14] Wall C.T.C.: Surgery on Compact Manifolds.Academic Press, London-New York, 1970. Zbl 0935.57003, MR 0431216
Reference: [15] White A.T.: Graphs, Groups and Surfaces.North Holland Ed., Amsterdam, 1973. Zbl 0551.05037
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_13.pdf 243.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo