Previous |  Up |  Next

Article

Title: On tempered convolution operators (English)
Author: Abdullah, Saleh
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 1-7
.
Category: math
.
Summary: \font\psaci=rsfs10 \font\ppsaci=rsfs7 In this paper we show that if $S$ is a convolution operator in $\text{\ppsaci S}^{\,\, \prime }$, and $S\ast \text{\ppsaci S}^{\,\, \prime }=\text{\ppsaci S}^{\,\, \prime }$, then the zeros of the Fourier transform of $S$ are of bounded order. Then we discuss relations between the topologies of the space $\text{\psaci O}_c^{\, \prime }$ of convolution operators on $\text{\ppsaci S}^{\,\, \prime }$. Finally, we give sufficient conditions for convergence in the space of convolution operators in $\text{\ppsaci S}^{\,\, \prime }$ and in its dual. (English)
Keyword: tempered distribution
Keyword: convolution operator
Keyword: Fourier transform
Keyword: convergence of sequences
MSC: 46F05
MSC: 46F10
MSC: 46F12
idZBL: Zbl 0807.46036
idMR: MR1292577
.
Date available: 2009-01-08T18:08:11Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118635
.
Reference: [1] Barros-Neto J.: An Introduction to the Theory of Distributions.Marcel Dekker, New York, 1973. Zbl 0512.46040, MR 0461128
Reference: [2] Grothendieck A.: Produits Tensoriels Topologiques et Espaces Nucleaires.Memoirs of the Amer. Math. Soc. 16, Providence, 1966. Zbl 0123.30301, MR 1609222
Reference: [3] Hörmander L.: On the division of distributions by polynomials.Ark. Mat., Band 3, No. 53 (1958), 555-568. MR 0124734
Reference: [4] Horvath J.: Topological Vector Spaces and Distributions.Vol. I, Addison-Wesley, Mass., 1966. Zbl 0143.15101, MR 0205028
Reference: [5] Keller K.: Some convergence properties of distributions.Studia Mathematica 77 (1983), 87-93. MR 0738046
Reference: [6] Schwartz L.: Théorie des Distributions.Hermann, Paris, 1966. Zbl 0962.46025, MR 0209834
Reference: [7] Sznajder S., Zielezny Z.: On some properties of convolution operators in $\mathscr{K}_{1}^{\prime}$ and $\mathscr{S}^{\prime}$.J. Math. Anal. Appl. 65 (1978), 543-554. MR 0510469
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_1.pdf 201.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo