Previous |  Up |  Next

Article

Title: Copies of $l^1$ and $c_o$ in Musielak-Orlicz sequence spaces (English)
Author: Alherk, Ghassan
Author: Hudzik, Henryk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 9-19
.
Category: math
.
Summary: Criteria in order that a Musielak-Orlicz sequence space $l^\Phi$ contains an isomorphic as well as an isomorphically isometric copy of $l^1$ are given. Moreover, it is proved that if $\Phi = (\Phi_i)$, where $\Phi_i$ are defined on a Banach space, $X$ does not satisfy the $\delta^o_2$-condition, then the Musielak-Orlicz sequence space $l^\Phi (X)$ of $X$-valued sequences contains an almost isometric copy of $c_o$. In the case of $X = I\!\!R$ it is proved also that if $l^\Phi$ contains an isomorphic copy of $c_o$, then $\Phi$ does not satisfy the $\delta^o_2$-condition. These results extend some results of [A] and [H2] to Musielak-Orlicz sequence spaces. (English)
Keyword: Musielak-Orlicz sequence space
Keyword: copy of $l^1$
Keyword: copy of $c_o$
MSC: 46B20
MSC: 46B25
MSC: 46B45
MSC: 46E30
idZBL: Zbl 0820.46013
idMR: MR1292578
.
Date available: 2009-01-08T18:08:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118636
.
Reference: [A] Alherk G.: On the non-$l_n^{(1)}$ and locally uniformly non-$l_n^{(1)}$ properties and $l^1$ copies in Musielak-Orlicz space.Comment. Math. Univ. Carolinae 31 (1990), 435-443. MR 1078478
Reference: [AB] Aliprantis C.D., Burkinshaw O.: Positive operators.Pure and Applied Math., Academic Press, Inc., 1985. Zbl 1098.47001, MR 0809372
Reference: [BP] Bessaga C., Pełczyński A.: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151-164. MR 0115069
Reference: [DH] Denker M., Hudzik H.: Uniformly non-$l^{(1)}_n$ Musielak-Orlicz sequence spaces.Proc. Indian Acad. Sci. 101 (1991), 71-86. MR 1125480
Reference: [H1] Hudzik H.: On some equivalent conditions in Musielak-Orlicz spaces.Comment. Math. (Prace Matem.) 24 (1984), 57-64. Zbl 0564.46022, MR 0759055
Reference: [H2] Hudzik H.: Orlicz spaces containing a copy of $l^1$.Math. Japonica 34 (1989), 747-759. MR 1022152
Reference: [HY] Hudzik H., Ye Y.: Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm.Comment. Math. Univ. Carolinae 31 (1990), 661-684. Zbl 0721.46012, MR 1091364
Reference: [K] Kamińska A.: Flat Orlicz-Musielak sequence spaces.Bull. Acad. Polon. Sci. Math. 30 (1982), 347-352. MR 0707748
Reference: [KA] Kantorovich L.V., Akilov G.P.: Functional Analysis (in Russian).Nauka, Moscow, 1977. MR 0511615
Reference: [KR] Krasnoselskii M.A., Rutickii Ya.B.: Convex functions and Orlicz spaces.Groningen, 1961 (translation).
Reference: [L] Luxemburg W.A.J.: Banach function spaces.Thesis, Delft, 1955. Zbl 0162.44701, MR 0072440
Reference: [M] Musielak J.: Orlicz spaces and modular spaces.Lecture Notes in Math. 1034, SpringerVerlag, 1983. Zbl 0557.46020, MR 0724434
Reference: [RR] Rao M.M., Ren Z.D.: Theory of Orlicz spaces.Pure and Applied Mathematics, Marcel Dekker, 1991. Zbl 0724.46032, MR 1113700
Reference: [T] Turett B.: Fenchel-Orlicz spaces.Dissertationes Math. 181 (1980), 1-60. Zbl 0435.46025, MR 0578390
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_2.pdf 215.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo