Previous |  Up |  Next

Article

Title: On Cohen-Macaulay rings (English)
Author: Enochs, Edgar E.
Author: Overtoun, Jenda M. G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 223-230
.
Category: math
.
Summary: In this paper, we use a characterization of $R$-modules $N$ such that $fd_RN = pd_RN$ to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting $N$ to be the $dth$ local cohomology functor of $R$ with respect to the maximal ideal where $d$ is the Krull dimension of $R$. (English)
Keyword: injective
Keyword: precovers
Keyword: preenvelopes
Keyword: canonical module
Keyword: Cohen-Macaulay
Keyword: \newline $n$-Gorenstein
Keyword: resolvent
Keyword: resolutions
MSC: 13C14
MSC: 13D02
MSC: 13D05
MSC: 13D45
MSC: 13H10
MSC: 18G10
MSC: 18G20
idZBL: Zbl 0816.13008
idMR: MR1286568
.
Date available: 2009-01-08T18:10:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118660
.
Reference: [1] Auslander M., Buchweitz R.: The homological theory of maximal Cohen-Macaulay approximations.Soc. Math. de France, Memoire 38 (1989), 5-37. Zbl 0697.13005, MR 1044344
Reference: [2] Bass H.: On the ubiquity of Gorenstein rings.Math. Z. 82 (1963), 8-28. Zbl 0112.26604, MR 0153708
Reference: [3] Enochs E., Jenda O.: Copure injective resolutions, flat resolvents and dimensions.Comment. Math. Univ. Carolinae 34 (1993), 202-211. Zbl 0780.18006, MR 1241728
Reference: [4] Enochs E., Jenda O.: Balanced functors applied to modules.J. Algebra 92 (1985), 303-310. Zbl 0554.18006, MR 0778450
Reference: [5] Foxby H.-B.: Isomorphisms between complexes with applications to the homological theory of modules.Math. Scand. 40 (1977), 5-19. Zbl 0356.13004, MR 0447269
Reference: [6] Grothendieck A.: Local Cohomology.Lecture Notes in Mathematics 41, Springer, 1967. Zbl 1079.14001, MR 0224620
Reference: [7] Herzog J., Kunz E.: Der Kanonische Modul eines Cohen-Macaulay-Rings.Lecture Notes in Mathematics 238, Springer, 1971. Zbl 0231.13009, MR 0412177
Reference: [8] Ishikawa T.: On injective modules and flat modules.Math. Soc. Japan 17 (1965), 291-296. Zbl 0199.07802, MR 0188272
Reference: [9] Jensen C.: Les foncteurs dérivées de $\lim _{\leftarrow}$ et leurs applications en théorie des modules.Lecture Notes in Mathematics 254, Springer, 1972. MR 0407091
Reference: [10] Lenzing H.: Endlich präsentierbare Moduln.Arch Math. 20 (1969), 262-266. Zbl 0184.06501, MR 0244322
Reference: [11] Roberts P.: Homological invariants of modules over commutative rings.Semin. Math. Super. 15, Presses Univ. Montreal, 1980. Zbl 0467.13007, MR 0569936
Reference: [12] Strooker J.: Homological questions in local algebra.London Math. Soc. Lecture Note Series 145, Cambridge Univ. Press, 1990. Zbl 0786.13008, MR 1074178
Reference: [13] Yoshino Y.: Cohen-Macaulay modules over Cohen-Macaulay rings.London Math. Soc. Lecture Note Series 146, Cambridge Univ. Press, 1990. Zbl 0745.13003, MR 1079937
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_2.pdf 203.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo