Previous |  Up |  Next

Article

Title: The nil radical of an Archimedean partially ordered ring with positive squares (English)
Author: Lavrič, Boris
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 231-238
.
Category: math
.
Summary: Let $R$ be an Archimedean partially ordered ring in which the square of every element is positive, and $N(R)$ the set of all nilpotent elements of $R$. It is shown that $N(R)$ is the unique nil radical of $R$, and that $N(R)$ is locally nilpotent and even nilpotent with exponent at most $3$ when $R$ is 2-torsion-free. $R$ is without non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator. The results are applied on partially ordered rings in which every element $a$ is expressed as $a=a_1-a_2$ with positive $a_1$, $a_2$ satisfying $a_1a_2=a_2a_1=0$. (English)
Keyword: partially ordered ring
Keyword: Archimedean
Keyword: nil radical
Keyword: nilpotent
MSC: 06F25
MSC: 16N40
MSC: 16W80
idZBL: Zbl 0805.06017
idMR: MR1286569
.
Date available: 2009-01-08T18:10:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118661
.
Reference: [1] Bernau S.J., Huijsmans C.B.: Almost $f$-algebras and $d$-algebras.Proc. Cambridge Philos. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782
Reference: [2] Birkhoff G., Pierce R.S.: Lattice-ordered rings.An. Acad. Brasil Ci\^enc. 28 (1956), 41-69. Zbl 0070.26602, MR 0080099
Reference: [3] Diem J.E.: A radical for lattice-ordered rings.Pacific J. Math. 25 (1968), 71-82. Zbl 0157.08004, MR 0227068
Reference: [4] Divinsky N.: Rings and Radicals.Allen, London, 1965. Zbl 0138.26303, MR 0197489
Reference: [5] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford-London-New YorkParis, 1963. Zbl 0137.02001, MR 0171864
Reference: [6] Hayes A.: A characterization of $f$-rings without non-zero nilpotents.J. London Math. Soc. 39 (1964), 706-707. Zbl 0126.06502, MR 0167501
Reference: [7] Jacobson N.: Structure of Rings.Colloquium Publication 37, Amer. Math. Soc., Providence, 1956. Zbl 0098.25901, MR 0081264
Reference: [8] Steinberg S.A.: On lattice-ordered rings in which the square of every element is positive.J. Austral. Math. Soc. Ser. A 22 (1976), 362-370. Zbl 0352.06017, MR 0427198
Reference: [9] Szász F.A.: Radicals of Rings.Akademiai Kiado - John Wiley & Sons, Budapest-ChichesterNew York-Brisbane-Toronto, 1981. MR 0636787
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_3.pdf 196.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo