Title:
|
The nil radical of an Archimedean partially ordered ring with positive squares (English) |
Author:
|
Lavrič, Boris |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
2 |
Year:
|
1994 |
Pages:
|
231-238 |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be an Archimedean partially ordered ring in which the square of every element is positive, and $N(R)$ the set of all nilpotent elements of $R$. It is shown that $N(R)$ is the unique nil radical of $R$, and that $N(R)$ is locally nilpotent and even nilpotent with exponent at most $3$ when $R$ is 2-torsion-free. $R$ is without non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator. The results are applied on partially ordered rings in which every element $a$ is expressed as $a=a_1-a_2$ with positive $a_1$, $a_2$ satisfying $a_1a_2=a_2a_1=0$. (English) |
Keyword:
|
partially ordered ring |
Keyword:
|
Archimedean |
Keyword:
|
nil radical |
Keyword:
|
nilpotent |
MSC:
|
06F25 |
MSC:
|
16N40 |
MSC:
|
16W80 |
idZBL:
|
Zbl 0805.06017 |
idMR:
|
MR1286569 |
. |
Date available:
|
2009-01-08T18:10:32Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118661 |
. |
Reference:
|
[1] Bernau S.J., Huijsmans C.B.: Almost $f$-algebras and $d$-algebras.Proc. Cambridge Philos. Soc. 107 (1990), 287-308. Zbl 0707.06009, MR 1027782 |
Reference:
|
[2] Birkhoff G., Pierce R.S.: Lattice-ordered rings.An. Acad. Brasil Ci\^enc. 28 (1956), 41-69. Zbl 0070.26602, MR 0080099 |
Reference:
|
[3] Diem J.E.: A radical for lattice-ordered rings.Pacific J. Math. 25 (1968), 71-82. Zbl 0157.08004, MR 0227068 |
Reference:
|
[4] Divinsky N.: Rings and Radicals.Allen, London, 1965. Zbl 0138.26303, MR 0197489 |
Reference:
|
[5] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford-London-New YorkParis, 1963. Zbl 0137.02001, MR 0171864 |
Reference:
|
[6] Hayes A.: A characterization of $f$-rings without non-zero nilpotents.J. London Math. Soc. 39 (1964), 706-707. Zbl 0126.06502, MR 0167501 |
Reference:
|
[7] Jacobson N.: Structure of Rings.Colloquium Publication 37, Amer. Math. Soc., Providence, 1956. Zbl 0098.25901, MR 0081264 |
Reference:
|
[8] Steinberg S.A.: On lattice-ordered rings in which the square of every element is positive.J. Austral. Math. Soc. Ser. A 22 (1976), 362-370. Zbl 0352.06017, MR 0427198 |
Reference:
|
[9] Szász F.A.: Radicals of Rings.Akademiai Kiado - John Wiley & Sons, Budapest-ChichesterNew York-Brisbane-Toronto, 1981. MR 0636787 |
. |