Previous |  Up |  Next

Article

Keywords:
fixed points; James' quasi-reflexive spaces; James Tree; nonexpansive mappings; Opial's property; the demiclosedness principle
Summary:
Two of James' three quasi-reflexive spaces, as well as the James Tree, have the uniform $w^{\ast }$-Opial property.
References:
[1] Aksoy A.G., Khamsi M.A.: Nonstandard Methods in Fixed Point Theory. Springer-Verlag, New York, 1990. MR 1066202 | Zbl 0713.47050
[2] Andrew A.: Spreading basic sequences and subspaces of James' quasi-reflexive space. Math. Scan. 48 (1981), 109-118. MR 0621422 | Zbl 0439.46010
[3] Brodskii M.S., Milman D.P.: On the center of a convex set. Dokl. Akad. Nauk SSSR 59 (1948), 837-840. MR 0024073
[4] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990. MR 1074005
[5] Goebel K., Reich S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984. MR 0744194 | Zbl 0537.46001
[6] Goebel K., Sekowski T., Stachura A.: Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021. MR 0586863 | Zbl 0448.47048
[7] Gǫrnicki J.: Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition. Comment. Math. 29 (1988), 59-68. MR 0988960
[8] Gossez J.P., Lami Dozo E.: Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J. Math. 40 (1972), 565-573. MR 0310717
[9] James R.C.: Bases and reflexivity of Banach spaces. Ann. of Math. 52 (1950), 518-527. MR 0039915 | Zbl 0039.12202
[10] James R.C.: A non-reflexive Banach space isometric with its second conjugate space. Proc. Nat. Acad. Sci. USA 37 (1951), 134-137. MR 0044024
[11] James R.C.: A separable somewhat reflexive Banach space with nonseparable dual. Bull. Amer. Math. Soc. 80 (1974), 738-743. MR 0417763 | Zbl 0286.46018
[12] James R.C.: Banach spaces quasi-reflexive of order one. Studia Math. 60 (1977), 157-177. MR 0461099 | Zbl 0356.46017
[13] Karlovitz L.A.: On nonexpansive mappings. Proc. Amer. Math. Soc. 55 (1976), 321-325. MR 0405182 | Zbl 0328.47033
[14] Khamsi M.A.: James' quasi-reflexive space has the fixed point property. Bull. Austral. Math. Soc. 39 (1989), 25-30. MR 0976257 | Zbl 0672.47045
[15] Khamsi M.A.: Normal structure for Banach spaces with Schauder decomposition. Canad. Math. Bull. 32 (1989), 344-351. MR 1010075 | Zbl 0647.46016
[16] Khamsi M.A.: On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces. preprint. MR 1380728 | Zbl 0854.47035
[17] Kirk W.A.: A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004-1006. MR 0189009 | Zbl 0141.32402
[18] Kuczumow T.: Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property. Proc. Amer. Math. Soc. 93 (1985), 430-432. MR 0773996 | Zbl 0585.47043
[19] Lindenstrauss J., Stegall C.: Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable. Studia Math. 54 (1975), 81-105. MR 0390720
[20] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces, Vol. I and II. Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979. MR 0415253
[21] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591-597. MR 0211301 | Zbl 0179.19902
[22] Opial Z.: Nonexpansive and Monotone Mappings in Banach Spaces. Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.
[23] Prus S.: Banach spaces with the uniform Opial property. Nonlinear Analysis 18 (1992), 697-704. MR 1160113 | Zbl 0786.46023
[24] Tingley D.: The normal structure of James' quasi-reflexive space. Bull. Austral. Math. Soc. 42 (1990), 95-100. MR 1066363 | Zbl 0724.46014
Partner of
EuDML logo