[1] Aksoy A.G., Khamsi M.A.:
Nonstandard Methods in Fixed Point Theory. Springer-Verlag, New York, 1990.
MR 1066202 |
Zbl 0713.47050
[2] Andrew A.:
Spreading basic sequences and subspaces of James' quasi-reflexive space. Math. Scan. 48 (1981), 109-118.
MR 0621422 |
Zbl 0439.46010
[3] Brodskii M.S., Milman D.P.:
On the center of a convex set. Dokl. Akad. Nauk SSSR 59 (1948), 837-840.
MR 0024073
[4] Goebel K., Kirk W.A.:
Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990.
MR 1074005
[5] Goebel K., Reich S.:
Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984.
MR 0744194 |
Zbl 0537.46001
[6] Goebel K., Sekowski T., Stachura A.:
Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball. Nonlinear Analysis 4 (1980), 1011-1021.
MR 0586863 |
Zbl 0448.47048
[7] Gǫrnicki J.:
Some remarks on almost convergence of the Picard iterates for nonexpansive mappings in Banach spaces which satisfy the Opial condition. Comment. Math. 29 (1988), 59-68.
MR 0988960
[8] Gossez J.P., Lami Dozo E.:
Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J. Math. 40 (1972), 565-573.
MR 0310717
[10] James R.C.:
A non-reflexive Banach space isometric with its second conjugate space. Proc. Nat. Acad. Sci. USA 37 (1951), 134-137.
MR 0044024
[11] James R.C.:
A separable somewhat reflexive Banach space with nonseparable dual. Bull. Amer. Math. Soc. 80 (1974), 738-743.
MR 0417763 |
Zbl 0286.46018
[12] James R.C.:
Banach spaces quasi-reflexive of order one. Studia Math. 60 (1977), 157-177.
MR 0461099 |
Zbl 0356.46017
[14] Khamsi M.A.:
James' quasi-reflexive space has the fixed point property. Bull. Austral. Math. Soc. 39 (1989), 25-30.
MR 0976257 |
Zbl 0672.47045
[15] Khamsi M.A.:
Normal structure for Banach spaces with Schauder decomposition. Canad. Math. Bull. 32 (1989), 344-351.
MR 1010075 |
Zbl 0647.46016
[16] Khamsi M.A.:
On uniform Opial condition and uniform Kadec-Klee property in Banach and metric spaces. preprint.
MR 1380728 |
Zbl 0854.47035
[17] Kirk W.A.:
A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004-1006.
MR 0189009 |
Zbl 0141.32402
[18] Kuczumow T.:
Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property. Proc. Amer. Math. Soc. 93 (1985), 430-432.
MR 0773996 |
Zbl 0585.47043
[19] Lindenstrauss J., Stegall C.:
Examples of separable spaces which do not contain $l_1$ and whose duals are non-separable. Studia Math. 54 (1975), 81-105.
MR 0390720
[20] Lindenstrauss J., Tzafriri L.:
Classical Banach Spaces, Vol. I and II. Springer-Verlag, BerlinHeidelberg-New York, 1977 and 1979.
MR 0415253
[21] Opial Z.:
Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 591-597.
MR 0211301 |
Zbl 0179.19902
[22] Opial Z.: Nonexpansive and Monotone Mappings in Banach Spaces. Lecture Notes 61-1, Center for Dynamical Systems, Brown University, Providence, R.I., 1967.
[23] Prus S.:
Banach spaces with the uniform Opial property. Nonlinear Analysis 18 (1992), 697-704.
MR 1160113 |
Zbl 0786.46023
[24] Tingley D.:
The normal structure of James' quasi-reflexive space. Bull. Austral. Math. Soc. 42 (1990), 95-100.
MR 1066363 |
Zbl 0724.46014