Title:
|
Equivariant completions (English) |
Author:
|
Megrelishvili, Michael |
Language:
|
English |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
539-547 |
. |
Category:
|
math |
. |
Summary:
|
An important consequence of a result of Katětov and Morita states that every metrizable space is contained in a complete metrizable space of the same dimension. We give an equivariant version of this fact in the case of a locally compact $\sigma$-compact acting group. (English) |
Keyword:
|
equivariant completion |
Keyword:
|
factorization |
Keyword:
|
dimension |
MSC:
|
22A05 |
MSC:
|
54H11 |
MSC:
|
54H15 |
idZBL:
|
Zbl 0871.54040 |
idMR:
|
MR1307281 |
. |
Date available:
|
2009-01-08T18:13:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118694 |
. |
Reference:
|
[1] Bourbaki N.: General Topology, Parts 1, 2.Hermann Paris (1966). |
Reference:
|
[2] Bourbaki N.: Topologie Générale, Ch. IX,X.Hermann Paris (1958). MR 0173226 |
Reference:
|
[3] Bronstein I.U.: Extensions of Minimal Transformation Groups.Sijthoff & Noordhoff, Alphen aan den Rijn, 1979. MR 0550605 |
Reference:
|
[4] Brook R.B.: A construction of the greatest ambit.Math. Systems Theory 4 (1970), 243-248. MR 0267038 |
Reference:
|
[5] Dikranjan D.N., Prodanov I.R., Stoyanov L.N.: Topological Groups: Characters, Dualities and Minimal Group Topologies.Marcel Dekker: Pure Appl. Math. 130 (1989). MR 1015288 |
Reference:
|
[6] Engelking R.: General Topology.P.W.N., Warszawa (1977). Zbl 0373.54002, MR 0500780 |
Reference:
|
[7] de Groot J.: The action of a locally compact group on a metric space.Nieuw Arch. Wisk. (3) 7 (1959), 70-74. Zbl 0092.02802, MR 0124434 |
Reference:
|
[8] de Groot J., Mcdowell R.H.: Extension of mappings on metric spaces.Fund. Math. 68 (1960), 251-263. Zbl 0100.18903, MR 0124026 |
Reference:
|
[9] Isbell J.: Uniform Spaces.AMS, Providence, Rhode Island (1964). Zbl 0124.15601, MR 0170323 |
Reference:
|
[10] Katětov M.: On the dimension of non-separable spaces I.Czech. Math. J. 2 (1952), 333-368. MR 0061372 |
Reference:
|
[11] Megrelishvili M.: Quasibounded uniform $G$-spaces (in Russian).Manuscript deposited at Gruz. NIINTI (Tbilisi) on March 3, 1987, No.331-G. |
Reference:
|
[12] Megrelishvili M.: A Tychonoff $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization.Russ. Math. Surv. 43:2 (1988), 177-178. MR 0940673 |
Reference:
|
[13] Megrelishvili M.: Compactification and factorization in the category of $G$-spaces.Categorical Topology and its Relation to Analysis, Algebra and Combinatorics J. Adámek, S. MacLane World Scientific Singapore (1989), 220-237. MR 1047903 |
Reference:
|
[14] Morita K.: Normal families and dimension theory in metric spaces.Math. Ann. 128, N4 (1954), 143-156. MR 0065906 |
Reference:
|
[15] Peters J., Sund T.: Automorphisms of locally compact groups.Pacific J. Math. 76 (1978), 143-146. Zbl 0354.22010, MR 0578732 |
Reference:
|
[16] de Vries J.: Universal topological transformation groups.General Topology and its Applications 5 (1975), 107-122. Zbl 0299.54030, MR 0372834 |
Reference:
|
[17] de Vries J.: Topological Transformation Groups I: A Categorical Approach.Math. Centre Tract 65 Mathematisch Centrum, Amsterdam (1975). MR 0415586 |
Reference:
|
[18] de Vries J.: On the existence of $G$-compactifications.Bull. Ac. Polon. Sci. Ser. Math. 26 (1978), 275-280. Zbl 0378.54028, MR 0644661 |
. |