Previous |  Up |  Next

Article

Title: $M$-mappings make their images less cellular (English)
Author: Tkačenko, Michael G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 3
Year: 1994
Pages: 553-563
.
Category: math
.
Summary: We consider $M$-mappings which include continuous mappings of spaces onto topological groups and continuous mappings of topological groups elsewhere. It is proved that if a space $X$ is an image of a product of Lindelöf $\Sigma$-spaces under an $M$-mapping then every regular uncountable cardinal is a weak precaliber for $X$, and hence $ X$ has the Souslin property. An image $X$ of a Lindelöf space under an $M$-mapping satisfies $cel_{\omega}X\le2^{\omega}$. Every $M$-mapping takes a $\Sigma(\aleph_0)$-space to an $\aleph_0$-cellular space. In each of these results, the cellularity of the domain of an $M$-mapping can be arbitrarily large. (English)
Keyword: $M$-mapping
Keyword: topological group
Keyword: Maltsev space
Keyword: $\aleph_0$-cellularity
MSC: 54A25
MSC: 54C99
MSC: 54H11
idZBL: Zbl 0840.54002
idMR: MR1307283
.
Date available: 2009-01-08T18:13:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118696
.
Reference: [1] ArhangelskiĭA.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181.
Reference: [2] ArhangelskiĭA.V., Ranchin D.V.: On dense subspaces of topological products and properties related with final compactness (in Russian).Vestnik Mosc. Univ. 1982, No.6, 21-28.
Reference: [3] Engelking R.: On functions defined on cartesian products.Fund. Math. 59 (1966), 221-231. Zbl 0158.41203, MR 0203697
Reference: [4] Hušek M.: Productivity of properties of topological groups.Topology Appl. 44 (1992), 189-196. MR 1173257
Reference: [5] Juhász I.: Cardinal Functions in Topology.Math. Centrum Tracts 34, Amsterdam, 1971. MR 0340021
Reference: [6] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products (in Russian).Dokl. AN SSSR 213 (1973), 774-776. MR 0339073
Reference: [7] Maltsev A.I.: To the general theory of algebraic systems (in Russian).Mat. Sb. 35 (1954), 3-20. MR 0065533
Reference: [8] Nagami K.: $\Sigma$-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963
Reference: [9] Pasynkov B.A.: On the relative cellularity of Lindelöf subspaces of topological groups.Topol. Appl., to appear. Zbl 0803.54016, MR 1278026
Reference: [10] Tkačenko M.G.: Some results on inverse spectra. I..Comment. Math. Univ. Carolinae 22 (1981), 621-633. MR 0633589
Reference: [11] Tkačenko M.G.: On the Souslin property in free topological groups over compacta (in Russian).Matem. Zametki 34 (1983), 601-607. MR 0722229
Reference: [12] Tkačenko M.G.: On mappings improving properties of their images (in Russian).Uspekhi Matem. Nauk 48 (1993), 187-188.
Reference: [13] Tkačenko M.G.: $M$-spaces and the cellularity of spaces.Topology Appl., to appear.
Reference: [14] Todorčević S.: Remarks on cellularity in products.Compositio Math. 57 (1986), 357-372. MR 0829326
Reference: [15] Todorčević S.: Cellularity of topological groups.Handwritten notes.
Reference: [16] UspenskiĭV.V.: Topological group generated by a Lindelöf $\Sigma$-space has the Souslin property.Soviet Math. Dokl. 26 (1982), 166-169.
Reference: [17] UspenskiĭV.V.: On continuous images of Lindelöf topological groups (in Russian, translated in English).Dokl. AN SSSR 285 (1985), 824-827. MR 0821360
Reference: [18] UspenskiĭV.V.: The Maltsev operation on countably compact spaces.Comment. Math. Univ. Carolinae 30 (1989), 395-402. MR 1014140
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-3_14.pdf 252.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo