Title:
|
Support prices for weakly maximal programs of a growth model with uncertainty (English) |
Author:
|
Papageorgiou, Nikolaos S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
581-595 |
. |
Category:
|
math |
. |
Summary:
|
We consider an infinite dimensional, nonstationary growth model with uncertainty. Using techniques from functional analysis and the subdifferentiation theory of concave functions, we establish the existence of a supporting price system for a weakly maximal program. (English) |
Keyword:
|
weakly maximal program |
Keyword:
|
support prices |
Keyword:
|
utility function |
Keyword:
|
value function |
Keyword:
|
Yosida-Hewitt decomposition |
Keyword:
|
concave subdifferential |
MSC:
|
49B20 |
MSC:
|
49J52 |
MSC:
|
90A15 |
MSC:
|
90A16 |
MSC:
|
90C90 |
MSC:
|
91B60 |
MSC:
|
91B62 |
idZBL:
|
Zbl 0820.90023 |
idMR:
|
MR1307286 |
. |
Date available:
|
2009-01-08T18:13:35Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118699 |
. |
Reference:
|
[1] Aliprantis C., Brown D., Burkinshaw O.: Existence and Optimality of Competitive Equilibria.Springer, Berlin, 1988. Zbl 0676.90001, MR 1075992 |
Reference:
|
[2] Brock W.: On existence of weakly maximal programmes in a multisector economy.Review of Economic Studies 37 (1970), 275-280. |
Reference:
|
[3] Dana R.-A.: Evaluation of development programs in a stationary economy with bounded primary resources.in Proceedings of the Warsaw Symposium on Mathematical Methods in Economics, ed. J. Lös, North-Holland, Amsterdam, 1973, pp. 179-205. MR 0434339 |
Reference:
|
[4] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. Zbl 0521.46035, MR 0453964 |
Reference:
|
[5] Ioffe A., Tichomirov V.: Theory of extremal Problems.North Holland, Amsterdam, 1979. MR 0528295 |
Reference:
|
[6] Jeanjean P.: Optimal development programs under production uncertainty: The undiscounted case.J. Economic Theory 7 (1974), 66-92. MR 0459534 |
Reference:
|
[7] Levin V.: The Lebesgue decomposition for functionals on the vector function space $L^\infty (X)$.Functional Analysis and Appl. 8 (1974), 314-317. MR 0370174 |
Reference:
|
[8] Pantelides G., Papageorgiou N.S.: Weakly maximal stationary programs for a discrete-time, stochastic growth model.Japan Jour. Indust. Appl. Math. 10 (1993), 471-486. Zbl 0820.90022, MR 1247878 |
Reference:
|
[9] Radner R.: Optimal stationary consumption with stochastic production and resources.J. Economic Theory 6 (1973), 68-90. MR 0452560 |
Reference:
|
[10] Rockafellar R.T.: Conjugate Duality and Optimization.Regional Conference Series in Appl. Math., Vol. 16, SIAM, Philadelphia, 1973. Zbl 0296.90036, MR 0373611 |
Reference:
|
[11] Takayama A.: Mathematical Economics.Cambridge University Press, Cambridge, 1985. Zbl 0568.90001, MR 0832684 |
Reference:
|
[12] Takekuma S.-I.: A support price theorem for the continuous time model of capital accumulation.Econometrica 50 (1982), 427-442. Zbl 0474.90012, MR 0662288 |
Reference:
|
[13] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316 |
Reference:
|
[14] Yosida K., Hewitt E.: Finitely additive measures.Trans. Amer. Math. Soc. 72 (1952), 45-66. Zbl 0046.05401, MR 0045194 |
Reference:
|
[15] Zilha I.: Characterization by prices of optimal programs under uncertainty.J. Math. Economics 3 (1976), 173-183. MR 0421618 |
. |