Previous |  Up |  Next

Article

Title: Support prices for weakly maximal programs of a growth model with uncertainty (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 3
Year: 1994
Pages: 581-595
.
Category: math
.
Summary: We consider an infinite dimensional, nonstationary growth model with uncertainty. Using techniques from functional analysis and the subdifferentiation theory of concave functions, we establish the existence of a supporting price system for a weakly maximal program. (English)
Keyword: weakly maximal program
Keyword: support prices
Keyword: utility function
Keyword: value function
Keyword: Yosida-Hewitt decomposition
Keyword: concave subdifferential
MSC: 49B20
MSC: 49J52
MSC: 90A15
MSC: 90A16
MSC: 90C90
MSC: 91B60
MSC: 91B62
idZBL: Zbl 0820.90023
idMR: MR1307286
.
Date available: 2009-01-08T18:13:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118699
.
Reference: [1] Aliprantis C., Brown D., Burkinshaw O.: Existence and Optimality of Competitive Equilibria.Springer, Berlin, 1988. Zbl 0676.90001, MR 1075992
Reference: [2] Brock W.: On existence of weakly maximal programmes in a multisector economy.Review of Economic Studies 37 (1970), 275-280.
Reference: [3] Dana R.-A.: Evaluation of development programs in a stationary economy with bounded primary resources.in Proceedings of the Warsaw Symposium on Mathematical Methods in Economics, ed. J. Lös, North-Holland, Amsterdam, 1973, pp. 179-205. MR 0434339
Reference: [4] Diestel J., Uhl J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. Zbl 0521.46035, MR 0453964
Reference: [5] Ioffe A., Tichomirov V.: Theory of extremal Problems.North Holland, Amsterdam, 1979. MR 0528295
Reference: [6] Jeanjean P.: Optimal development programs under production uncertainty: The undiscounted case.J. Economic Theory 7 (1974), 66-92. MR 0459534
Reference: [7] Levin V.: The Lebesgue decomposition for functionals on the vector function space $L^\infty (X)$.Functional Analysis and Appl. 8 (1974), 314-317. MR 0370174
Reference: [8] Pantelides G., Papageorgiou N.S.: Weakly maximal stationary programs for a discrete-time, stochastic growth model.Japan Jour. Indust. Appl. Math. 10 (1993), 471-486. Zbl 0820.90022, MR 1247878
Reference: [9] Radner R.: Optimal stationary consumption with stochastic production and resources.J. Economic Theory 6 (1973), 68-90. MR 0452560
Reference: [10] Rockafellar R.T.: Conjugate Duality and Optimization.Regional Conference Series in Appl. Math., Vol. 16, SIAM, Philadelphia, 1973. Zbl 0296.90036, MR 0373611
Reference: [11] Takayama A.: Mathematical Economics.Cambridge University Press, Cambridge, 1985. Zbl 0568.90001, MR 0832684
Reference: [12] Takekuma S.-I.: A support price theorem for the continuous time model of capital accumulation.Econometrica 50 (1982), 427-442. Zbl 0474.90012, MR 0662288
Reference: [13] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316
Reference: [14] Yosida K., Hewitt E.: Finitely additive measures.Trans. Amer. Math. Soc. 72 (1952), 45-66. Zbl 0046.05401, MR 0045194
Reference: [15] Zilha I.: Characterization by prices of optimal programs under uncertainty.J. Math. Economics 3 (1976), 173-183. MR 0421618
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-3_17.pdf 251.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo