Previous |  Up |  Next

Article

Title: On the Jacobson radical of strongly group graded rings (English)
Author: Kelarev, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 3
Year: 1994
Pages: 575-580
.
Category: math
.
Summary: For any non-torsion group $G$ with identity $e$, we construct a strongly $G$-graded ring $R$ such that the Jacobson radical $J(R_e)$ is locally nilpotent, but $J(R)$ is not locally nilpotent. This answers a question posed by Puczy{\l}owski. (English)
Keyword: strongly graded rings
Keyword: radicals
Keyword: local nilpotency
MSC: 16A03
MSC: 16A20
MSC: 16N20
MSC: 16N40
MSC: 16W50
idZBL: Zbl 0815.16025
idMR: MR1307285
.
Date available: 2009-01-08T18:13:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118698
.
Reference: [1] Amitsur S.A.: Rings of quotients and Morita contexts.J. Algebra 17 (1971), 273-298. Zbl 0221.16014, MR 0414604
Reference: [2] Clase M.V., Jespers E.: On the Jacobson radical of semigroup graded rings.to appear. Zbl 0811.16034, MR 1296583
Reference: [3] Cohen M., Montgomery S.: Group-graded rings, smash products, and group actions.Trans. Amer. Math. Soc. 282 (1984), 237-258. Zbl 0533.16001, MR 0728711
Reference: [4] Cohen M., Rowen L.H.: Group graded rings.Commun. Algebra 11 (1983), 1252-1270. Zbl 0522.16001, MR 0696990
Reference: [5] Gardner B.J.: Some aspects of $T$-nilpotence.Pacific J. Math 53 (1974), 117-130. Zbl 0253.16009, MR 0360667
Reference: [6] Jespers E.: On radicals of graded rings and applications to semigroup rings.Commun. Algebra 13 (1985), 2457-2472. Zbl 0575.16001, MR 0807485
Reference: [7] Jespers E., Krempa J., Puczyłowski E.R.: On radicals of graded rings.Commun. Algebra 10 (1982), 1849-1854. MR 0674695
Reference: [8] Jespers E., Puczyłowski E.R.: The Jacobson and Brown-McCoy radicals of rings graded by free groups.Commun. Algebra 19 (1991), 551-558. MR 1100363
Reference: [9] Karpilovsky G.: The Jacobson Radical of Classical Rings.Pitman Monographs, New York, 1991. Zbl 0729.16001, MR 1124405
Reference: [10] Kelarev A.V.: Hereditary radicals and bands of associative rings.J. Austral. Math. Soc. (Ser. A) 51 (1991), 62-72. Zbl 0756.16010, MR 1119688
Reference: [11] Kelarev A.V.: Radicals of graded rings and applications to semigroup rings.Commun. Algebra 20 (1992), 681-700. Zbl 0748.16018, MR 1153042
Reference: [12] Năstăsescu C.: Strongly graded rings of finite groups.Commun. Algebra 11 (1983), 1033-1071. MR 0700723
Reference: [13] Okniński J.: On the radical of semigroup algebras satisfying polynomial identities.Math. Proc. Cambridge Philos. Soc. 99 (1986), 45-50. MR 0809496
Reference: [14] Okniński J.: Semigroup Algebras.Marcel Dekker, New York, 1991. MR 1083356
Reference: [15] Passman D.S.: Infinite crossed products and group graded rings.Trans. Amer. Math. Soc. 284 (1984), 707-727. Zbl 0519.16010, MR 0743740
Reference: [16] Passman D.S.: The Algebraic Structure of Group Rings.Wiley Interscience, New York, 1977. Zbl 0654.16001, MR 0470211
Reference: [17] Puczyłowski E.R.: A note on graded algebras.Proc. Amer. Math. Soc. 113 (1991), 1-3. MR 0991706
Reference: [18] Puczyłowski E.R.: Some questions concerning radicals of associative rings.Proc. Szekszásrd 1991 Conf. Theory of Radicals Coll. Math. Soc. János Bolyai 61 (1993), 209-227. MR 1243913
Reference: [19] Ram J.: On the semisimplicity of skew polynomial rings.Proc. Amer. Math. Soc. 90 (1984), 347-351. Zbl 0535.16002, MR 0728345
Reference: [20] Saorín M.: Descending chain conditions for graded rings.Proc. Amer. Math. Soc. 115 (1992), 295-301. MR 1093603
Reference: [21] Wauters P., Jespers E.: Rings graded by an inverse semigroup with finitely many idempotents.Houston J. Math. 15 (1989), 291-304. Zbl 0685.16003, MR 1022070
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-3_16.pdf 189.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo